Learning to Predict and Optimize Imperfect MIMO System Performance: Framework and Application

Jingyi Su, Fanlin Meng, Shengheng Liu, Yongming Huang, Zhaohua Lu
{"title":"Learning to Predict and Optimize Imperfect MIMO System Performance: Framework and Application","authors":"Jingyi Su, Fanlin Meng, Shengheng Liu, Yongming Huang, Zhaohua Lu","doi":"10.1109/GLOBECOM48099.2022.10001369","DOIUrl":null,"url":null,"abstract":"In imperfect multiple-input multiple-output (MIMO) systems, model-based methods for performance prediction and optimization generally experience degradation in the dynamically changing environment with unknown interference and uncertain channel state information (CSI). To adapt to such challenging settings and better accomplish the network auto-tuning tasks, we propose a generic learnable model-driven framework. We further consider transmit regularized zero-forcing (RZF) precoding as a usage instance to illustrate the proposed framework. The overall process can be divided into three cascaded stages. First, we design a light neural network for refined prediction of sum rate based on coarse model-driven approximations. Then, the CSI uncertainty is estimated on the learned predictor in an iterative manner. In the last step the regularization term in the transmit RZF precoding is optimized. The effectiveness of the generic framework and the derivative method thereof is showcased via simulation results.","PeriodicalId":313199,"journal":{"name":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM48099.2022.10001369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In imperfect multiple-input multiple-output (MIMO) systems, model-based methods for performance prediction and optimization generally experience degradation in the dynamically changing environment with unknown interference and uncertain channel state information (CSI). To adapt to such challenging settings and better accomplish the network auto-tuning tasks, we propose a generic learnable model-driven framework. We further consider transmit regularized zero-forcing (RZF) precoding as a usage instance to illustrate the proposed framework. The overall process can be divided into three cascaded stages. First, we design a light neural network for refined prediction of sum rate based on coarse model-driven approximations. Then, the CSI uncertainty is estimated on the learned predictor in an iterative manner. In the last step the regularization term in the transmit RZF precoding is optimized. The effectiveness of the generic framework and the derivative method thereof is showcased via simulation results.
学习预测和优化不完美MIMO系统性能:框架和应用
在不完全多输入多输出(MIMO)系统中,在未知干扰和信道状态信息(CSI)不确定的动态变化环境中,基于模型的性能预测和优化方法通常会出现退化。为了适应这种具有挑战性的环境,更好地完成网络自调优任务,我们提出了一个通用的可学习模型驱动框架。我们进一步考虑了传输正则化零强制(RZF)预编码作为一个使用实例来说明所提出的框架。整个过程可分为三个级联阶段。首先,我们设计了一个轻神经网络,用于基于粗糙模型驱动近似的和率精细预测。然后,以迭代的方式在学习到的预测器上估计CSI不确定性。最后对发送RZF预编码中的正则化项进行了优化。仿真结果验证了该通用框架及其衍生方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信