Blog Feedback Prediction based on Ensemble Machine Learning Regression Model: Towards Data Fusion Analysis

Hamzah A. Alsayadi, E. El-Kenawy, A. Ibrahim, M. Eid, Abdelaziz A. Abdelhamid
{"title":"Blog Feedback Prediction based on Ensemble Machine Learning Regression Model: Towards Data Fusion Analysis","authors":"Hamzah A. Alsayadi, E. El-Kenawy, A. Ibrahim, M. Eid, Abdelaziz A. Abdelhamid","doi":"10.54216/fpa.090103","DOIUrl":null,"url":null,"abstract":"The last decade lead to an unbelievable growth of the importance of social media. Due to the huge amounts of documents appearing in social media, there is an enormous need for the automatic analysis of such documents. In this work, we proposed various regression models for the blog feedback prediction to be used in the data fusion environment. These models include decision tree regressor, MLP regressor, SVR, random forest regressor, and K-Neighbors regressor. The models are enhanced by average ensemble and ensemble using K-Neighbors regressor. The Blog Feedback dataset is used for training and evaluating the proposed models. The results show that there is a decrease in RMSE, MAE, MBE, R, R2, RRMSE, NSE, and WI when compared to the traditional methods.","PeriodicalId":269527,"journal":{"name":"Fusion: Practice and Applications","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion: Practice and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/fpa.090103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The last decade lead to an unbelievable growth of the importance of social media. Due to the huge amounts of documents appearing in social media, there is an enormous need for the automatic analysis of such documents. In this work, we proposed various regression models for the blog feedback prediction to be used in the data fusion environment. These models include decision tree regressor, MLP regressor, SVR, random forest regressor, and K-Neighbors regressor. The models are enhanced by average ensemble and ensemble using K-Neighbors regressor. The Blog Feedback dataset is used for training and evaluating the proposed models. The results show that there is a decrease in RMSE, MAE, MBE, R, R2, RRMSE, NSE, and WI when compared to the traditional methods.
基于集成机器学习回归模型的博客反馈预测:迈向数据融合分析
在过去的十年里,社交媒体的重要性以令人难以置信的速度增长。由于社交媒体上出现了大量的文档,因此对这些文档的自动分析有很大的需求。在这项工作中,我们提出了用于数据融合环境的博客反馈预测的各种回归模型。这些模型包括决策树回归器、MLP回归器、SVR、随机森林回归器和K-Neighbors回归器。模型通过平均集成和k近邻回归器集成得到增强。Blog Feedback数据集用于训练和评估所提出的模型。结果表明,与传统方法相比,RMSE、MAE、MBE、R、R2、RRMSE、NSE和WI均有所降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信