{"title":"Route discovery and capacity of ad hoc networks","authors":"E. Perevalov, Rick S. Blum, A. Nigara, Xun Chen","doi":"10.1109/GLOCOM.2005.1578257","DOIUrl":null,"url":null,"abstract":"Throughput capacity of large ad hoc networks has been shown to scale adversely with the size of network n. However the need for the nodes to find or repair routes has not been analyzed in this context. In this paper, we explicitly take route discovery into account and obtain the scaling law for the throughput capacity under general assumptions on the network environment, node behavior, and the quality of route discovery algorithms. We also discuss a number of possible scenarios and show that the need for route discovery may change the scaling for the throughput capacity dramatically","PeriodicalId":319736,"journal":{"name":"GLOBECOM '05. IEEE Global Telecommunications Conference, 2005.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM '05. IEEE Global Telecommunications Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2005.1578257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Throughput capacity of large ad hoc networks has been shown to scale adversely with the size of network n. However the need for the nodes to find or repair routes has not been analyzed in this context. In this paper, we explicitly take route discovery into account and obtain the scaling law for the throughput capacity under general assumptions on the network environment, node behavior, and the quality of route discovery algorithms. We also discuss a number of possible scenarios and show that the need for route discovery may change the scaling for the throughput capacity dramatically