Learned Intrinsic Auto-Calibration From Fundamental Matrices

Karim Samaha, Georges Younes, Daniel C. Asmar, J. Zelek
{"title":"Learned Intrinsic Auto-Calibration From Fundamental Matrices","authors":"Karim Samaha, Georges Younes, Daniel C. Asmar, J. Zelek","doi":"10.1109/CRV55824.2022.00037","DOIUrl":null,"url":null,"abstract":"Auto-calibration that relies on unconstrained image content and epipolar relationships is necessary in online operations, especially when internal calibration parameters such as focal length can vary. In contrast, traditional calibration relies on a checkerboard and other scene information and are typically conducted offline. Unfortunately, auto-calibration may not always converge when solved traditionally in an iterative optimization formalism. We propose to solve for the intrinsic calibration parameters using a neural network that is trained on a synthetic Unity dataset that we created. We demonstrate our results on both synthetic and real data to validate the generalizability of our neural network model, which outperforms traditional methods by 2% to 30%, and outperforms recent deep learning approaches by a factor of 2 to 4 times.","PeriodicalId":131142,"journal":{"name":"2022 19th Conference on Robots and Vision (CRV)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th Conference on Robots and Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV55824.2022.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Auto-calibration that relies on unconstrained image content and epipolar relationships is necessary in online operations, especially when internal calibration parameters such as focal length can vary. In contrast, traditional calibration relies on a checkerboard and other scene information and are typically conducted offline. Unfortunately, auto-calibration may not always converge when solved traditionally in an iterative optimization formalism. We propose to solve for the intrinsic calibration parameters using a neural network that is trained on a synthetic Unity dataset that we created. We demonstrate our results on both synthetic and real data to validate the generalizability of our neural network model, which outperforms traditional methods by 2% to 30%, and outperforms recent deep learning approaches by a factor of 2 to 4 times.
从基本矩阵学习固有的自动校准
在在线操作中,依赖于不受约束的图像内容和极缘关系的自动校准是必要的,特别是当内部校准参数(如焦距)可能变化时。相比之下,传统的校准依赖于棋盘和其他场景信息,通常是离线进行的。不幸的是,在传统的迭代优化形式下,自动校准可能并不总是收敛的。我们建议使用在我们创建的合成Unity数据集上训练的神经网络来解决固有校准参数。我们在合成数据和真实数据上展示了我们的结果,以验证我们的神经网络模型的泛化性,该模型比传统方法高出2%到30%,比最近的深度学习方法高出2到4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信