Symmetric Temporal Theorem Proving

Amir Niknafs-Kermani, B. Konev, M. Fisher
{"title":"Symmetric Temporal Theorem Proving","authors":"Amir Niknafs-Kermani, B. Konev, M. Fisher","doi":"10.1109/TIME.2012.20","DOIUrl":null,"url":null,"abstract":"In this paper we consider the deductive verification of propositional temporal logic specifications of symmetric systems. In particular, we provide a heuristic approach to the scalability problems associated with analysing properties of large numbers of processes. Essentially, we use a temporal resolution procedure to verify properties of a system with few processes and then generalise the outcome in order to reduce the verification complexity of the same system with much larger numbers of processes. This provides a practical route to deductive verification for many systems comprising identical processes.","PeriodicalId":137826,"journal":{"name":"2012 19th International Symposium on Temporal Representation and Reasoning","volume":"13 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 19th International Symposium on Temporal Representation and Reasoning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIME.2012.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider the deductive verification of propositional temporal logic specifications of symmetric systems. In particular, we provide a heuristic approach to the scalability problems associated with analysing properties of large numbers of processes. Essentially, we use a temporal resolution procedure to verify properties of a system with few processes and then generalise the outcome in order to reduce the verification complexity of the same system with much larger numbers of processes. This provides a practical route to deductive verification for many systems comprising identical processes.
对称时间定理的证明
本文研究了对称系统的命题时间逻辑规范的演绎验证。特别是,我们提供了一种启发式方法来解决与分析大量进程的属性相关的可伸缩性问题。从本质上讲,我们使用时间解析过程来验证具有少量进程的系统的属性,然后推广结果,以降低具有大量进程的同一系统的验证复杂性。这为包含相同过程的许多系统提供了演绎验证的实用途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信