A Statistical Defense Approach for Detecting Adversarial Examples

Alessandro Cennamo, Ido Freeman, A. Kummert
{"title":"A Statistical Defense Approach for Detecting Adversarial Examples","authors":"Alessandro Cennamo, Ido Freeman, A. Kummert","doi":"10.1145/3415048.3416103","DOIUrl":null,"url":null,"abstract":"Adversarial examples are maliciously modified inputs created to fool Machine Learning algorithms (ML). The existence of such inputs presents a major issue to the expansion of ML-based solutions. Many researchers have already contributed to the topic, providing both cutting edge-attack techniques and various defense strategies. This work focuses on the development of a system capable of detecting adversarial samples by exploiting statistical information from the training-set. Our detector computes several distorted replicas of the test input, then collects the classifier's prediction vectors to build a meaningful signature for the detection task. Then, the signature is projected onto a class-specific statistic vector to infer the input's nature. The class predicted for the original input is used to select the class-statistic vector. We show that our method reliably detects malicious inputs, outperforming state-of-the-art approaches in various settings, while being complementary to other defense solutions.","PeriodicalId":122511,"journal":{"name":"Proceedings of the 2020 International Conference on Pattern Recognition and Intelligent Systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Conference on Pattern Recognition and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3415048.3416103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Adversarial examples are maliciously modified inputs created to fool Machine Learning algorithms (ML). The existence of such inputs presents a major issue to the expansion of ML-based solutions. Many researchers have already contributed to the topic, providing both cutting edge-attack techniques and various defense strategies. This work focuses on the development of a system capable of detecting adversarial samples by exploiting statistical information from the training-set. Our detector computes several distorted replicas of the test input, then collects the classifier's prediction vectors to build a meaningful signature for the detection task. Then, the signature is projected onto a class-specific statistic vector to infer the input's nature. The class predicted for the original input is used to select the class-statistic vector. We show that our method reliably detects malicious inputs, outperforming state-of-the-art approaches in various settings, while being complementary to other defense solutions.
一种检测对抗性示例的统计防御方法
对抗性示例是恶意修改输入以欺骗机器学习算法(ML)。这种输入的存在对基于机器学习的解决方案的扩展提出了一个主要问题。许多研究人员已经对这个话题做出了贡献,提供了尖端的攻击技术和各种防御策略。这项工作的重点是开发一个能够通过利用来自训练集的统计信息来检测对抗性样本的系统。我们的检测器计算测试输入的几个扭曲副本,然后收集分类器的预测向量,为检测任务构建有意义的签名。然后,将签名投影到特定于类的统计向量上,以推断输入的性质。为原始输入预测的类用于选择类统计向量。我们表明,我们的方法可靠地检测恶意输入,在各种设置中优于最先进的方法,同时与其他防御解决方案互补。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信