Street-level Air Quality Inference Based on Geographically Context-aware Random Forest Using Opportunistic Mobile Sensor Network

Xuening Qin, T. Do, J. Hofman, Esther Rodrigo, Valerio La Manna Panzica, N. Deligiannis, Wilfried Philips
{"title":"Street-level Air Quality Inference Based on Geographically Context-aware Random Forest Using Opportunistic Mobile Sensor Network","authors":"Xuening Qin, T. Do, J. Hofman, Esther Rodrigo, Valerio La Manna Panzica, N. Deligiannis, Wilfried Philips","doi":"10.1145/3461353.3461370","DOIUrl":null,"url":null,"abstract":"The spatial heterogeneity and temporal variability of air pollution in urban environments make air quality inference for fine-grained air pollution monitoring extremely challenging. Most of the existing work estimates the air quality using sparse measurements collected from a limited number of fixed monitoring stations or make use of computationally demanding physicochemical models simulating the source and fate of pollutants across multiple spatial scales. In this work, we propose a geographically context-aware random forest model for street-level air quality inference using high spatial resolution data collected by an opportunistic mobile sensor network. Compared with a traditional random forest model, the proposed method builds a local model for each location by considering the neighbors in both geographical and feature space. The model is evaluated on our real air quality dataset collected from mobile sensors in Antwerp, Belgium. The experimental results show that the proposed method outperforms a series of commonly used methods including Ordinary Kriging (OK), Inverse Distance Weighting (IDW) and Random forest (RF).","PeriodicalId":114871,"journal":{"name":"Proceedings of the 2021 5th International Conference on Innovation in Artificial Intelligence","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 5th International Conference on Innovation in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3461353.3461370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The spatial heterogeneity and temporal variability of air pollution in urban environments make air quality inference for fine-grained air pollution monitoring extremely challenging. Most of the existing work estimates the air quality using sparse measurements collected from a limited number of fixed monitoring stations or make use of computationally demanding physicochemical models simulating the source and fate of pollutants across multiple spatial scales. In this work, we propose a geographically context-aware random forest model for street-level air quality inference using high spatial resolution data collected by an opportunistic mobile sensor network. Compared with a traditional random forest model, the proposed method builds a local model for each location by considering the neighbors in both geographical and feature space. The model is evaluated on our real air quality dataset collected from mobile sensors in Antwerp, Belgium. The experimental results show that the proposed method outperforms a series of commonly used methods including Ordinary Kriging (OK), Inverse Distance Weighting (IDW) and Random forest (RF).
基于地理环境感知随机森林的街道级空气质量推断利用机会移动传感器网络
城市环境中空气污染的空间异质性和时间变异性使得精细空气污染监测的空气质量推断极具挑战性。现有的大部分工作都是利用从有限数量的固定监测站收集的稀疏测量数据来估计空气质量,或者利用计算要求很高的物理化学模型来模拟污染物在多个空间尺度上的来源和命运。在这项工作中,我们提出了一个地理环境感知随机森林模型,用于街道级空气质量推断,该模型使用机会移动传感器网络收集的高空间分辨率数据。与传统的随机森林模型相比,该方法同时考虑地理空间和特征空间的相邻点,为每个位置建立局部模型。该模型在我们从比利时安特卫普的移动传感器收集的真实空气质量数据集上进行了评估。实验结果表明,该方法优于普通克里格(OK)、逆距离加权(IDW)和随机森林(RF)等常用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信