Inner Rectangular Drawings of Plane Graphs

Kazuyuki Miura, Hiroki Haga, Takao Nishizeki
{"title":"Inner Rectangular Drawings of Plane Graphs","authors":"Kazuyuki Miura, Hiroki Haga, Takao Nishizeki","doi":"10.1142/S0218195906002026","DOIUrl":null,"url":null,"abstract":"A drawing of a plane graph is called an inner rectangular drawing if every edge is drawn as a horizontal or vertical line segment so that every inner face is a rectangle In this paper we show that a plane graph G has an inner rectangular drawing D if and only if a new bipartite graph constructed from G has a perfect matching We also show that D can be found in time O(n1.5/log n) if G has n vertices and a sketch of the outer face is prescribed, that is, all the convex outer vertices and concave ones are prescribed.","PeriodicalId":285210,"journal":{"name":"International Journal of Computational Geometry and Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218195906002026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

A drawing of a plane graph is called an inner rectangular drawing if every edge is drawn as a horizontal or vertical line segment so that every inner face is a rectangle In this paper we show that a plane graph G has an inner rectangular drawing D if and only if a new bipartite graph constructed from G has a perfect matching We also show that D can be found in time O(n1.5/log n) if G has n vertices and a sketch of the outer face is prescribed, that is, all the convex outer vertices and concave ones are prescribed.
平面图形的内矩形图
平面图的绘制叫做内部矩形图如果每个边缘画作为一个水平或垂直的线段,这样每一个内表面都是矩形在本文中,我们表明,平面图G有一个内在的矩形图D当且仅当一个新的两偶图由G有一个完美的匹配我们可以发现还表明,D O (n1.5 / O (log n))如果G n顶点和草图的外脸规定,也就是说,所有的外凸顶点和内凹顶点都是规定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信