Sentiment, Count and Cases: Analysis of Twitter discussions during COVID-19 Pandemic

Zainab Tariq Soomro, Sardar Haider Waseem Ilyas, Ussama Yaqub
{"title":"Sentiment, Count and Cases: Analysis of Twitter discussions during COVID-19 Pandemic","authors":"Zainab Tariq Soomro, Sardar Haider Waseem Ilyas, Ussama Yaqub","doi":"10.1109/BESC51023.2020.9348291","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze over 18 million coronavirus related Twitter messages collected between March 1, 2020 and May 31, 2020. We perform sentiment analysis using VADER, a rule-based supervised machine learning model, to evaluate the relationship between public sentiment and number of COVID-19 cases. We also look at the frequency of mentions of a country in tweets and the rise in its' daily number of COVID-19 cases. Some of our findings include the discovery of a correlation between the number of tweets mentioning Italy, USA, and UK and the daily increase in new COVID-19 cases in these countries.","PeriodicalId":224502,"journal":{"name":"2020 7th International Conference on Behavioural and Social Computing (BESC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Behavioural and Social Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC51023.2020.9348291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we analyze over 18 million coronavirus related Twitter messages collected between March 1, 2020 and May 31, 2020. We perform sentiment analysis using VADER, a rule-based supervised machine learning model, to evaluate the relationship between public sentiment and number of COVID-19 cases. We also look at the frequency of mentions of a country in tweets and the rise in its' daily number of COVID-19 cases. Some of our findings include the discovery of a correlation between the number of tweets mentioning Italy, USA, and UK and the daily increase in new COVID-19 cases in these countries.
情绪、数量和案例:COVID-19大流行期间Twitter讨论分析
在本文中,我们分析了2020年3月1日至2020年5月31日期间收集的1800多万条与冠状病毒相关的推特信息。我们使用基于规则的监督机器学习模型VADER进行情绪分析,以评估公众情绪与COVID-19病例数之间的关系。我们还研究了一个国家在推特上被提及的频率,以及该国每日新冠肺炎病例数的增长情况。我们的一些发现包括发现提到意大利、美国和英国的推文数量与这些国家每日新增COVID-19病例的增加之间存在相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信