Ashish Raniwala, Pradipta De, Srikant Sharma, Rupa Krishnan, T. Chiueh
{"title":"Globally fair radio resource allocation for wireless mesh networks","authors":"Ashish Raniwala, Pradipta De, Srikant Sharma, Rupa Krishnan, T. Chiueh","doi":"10.1109/MASCOT.2009.5366631","DOIUrl":null,"url":null,"abstract":"Network flows running on a wireless mesh network (WMN) may suffer from partial failures in the form of serious throughput degradation, sometimes to the extent of starvation, because of weaknesses in the underlying MAC protocol, dissimilar physical transmission rates or different degrees of local congestion. Most existing WMN transport protocols fail to take these factors into account. This paper describes the design, implementation and evaluation of a coordinated congestion control (C3L) algorithm that guarantees fair resource allocation under adverse scenarios and thus provides end-to-end max-min fairness among competing flows. The C3L algorithm features an advanced topology discovery mechanism that detects the inhibition of wireless communication links, and a general collision domain capacity re-estimation mechanism that effectively addresses such inhibition. A comprehensive ns-2-based simulation study as well as empirical measurements taken from an IEEE 802.11a-based multi-hop wireless testbed demonstrate that the C3L algorithm greatly improves inter-flow fairness, eliminates the starvation problem, and at the same time maintains high radio resource utilization efficiency.","PeriodicalId":275737,"journal":{"name":"2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOT.2009.5366631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Network flows running on a wireless mesh network (WMN) may suffer from partial failures in the form of serious throughput degradation, sometimes to the extent of starvation, because of weaknesses in the underlying MAC protocol, dissimilar physical transmission rates or different degrees of local congestion. Most existing WMN transport protocols fail to take these factors into account. This paper describes the design, implementation and evaluation of a coordinated congestion control (C3L) algorithm that guarantees fair resource allocation under adverse scenarios and thus provides end-to-end max-min fairness among competing flows. The C3L algorithm features an advanced topology discovery mechanism that detects the inhibition of wireless communication links, and a general collision domain capacity re-estimation mechanism that effectively addresses such inhibition. A comprehensive ns-2-based simulation study as well as empirical measurements taken from an IEEE 802.11a-based multi-hop wireless testbed demonstrate that the C3L algorithm greatly improves inter-flow fairness, eliminates the starvation problem, and at the same time maintains high radio resource utilization efficiency.