Chunyang Wang, Yanmin Zhu, Aixin Sun, Zhaobo Wang, K. Wang
{"title":"A Preference Learning Decoupling Framework for User Cold-Start Recommendation","authors":"Chunyang Wang, Yanmin Zhu, Aixin Sun, Zhaobo Wang, K. Wang","doi":"10.1145/3539618.3591627","DOIUrl":null,"url":null,"abstract":"The issue of user cold-start poses a long-standing challenge to recommendation systems, due to the scarce interactions of new users. Recently, meta-learning based studies treat each cold-start user as a user-specific few-shot task and then derive meta-knowledge about fast model adaptation across training users. However, existing solutions mostly do not clearly distinguish the concept of new users and the concept of novel preferences, leading to over-reliance on meta-learning based adaptability to novel patterns. In addition, we also argue that the existing meta-training task construction inherently suffers from the memorization overfitting issue, which inevitably hinders meta-generalization to new users. In response to the aforementioned issues, we propose a preference learning decoupling framework, which is enhanced with meta-augmentation (PDMA), for user cold-start recommendation. To rescue the meta-learning from unnecessary adaptation to common patterns, our framework decouples preference learning for a cold-start user into two complementary aspects: common preference transfer, and novel preference adaptation. To handle the memorization overfitting issue, we further propose to augment meta-training users by injecting attribute-based noises, to achieve mutually-exclusive tasks. Extensive experiments on benchmark datasets demonstrate that our framework achieves superior performance improvements against state-of-the-art methods. We also show that our proposed framework is effective in alleviating memorization overfitting.","PeriodicalId":425056,"journal":{"name":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539618.3591627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The issue of user cold-start poses a long-standing challenge to recommendation systems, due to the scarce interactions of new users. Recently, meta-learning based studies treat each cold-start user as a user-specific few-shot task and then derive meta-knowledge about fast model adaptation across training users. However, existing solutions mostly do not clearly distinguish the concept of new users and the concept of novel preferences, leading to over-reliance on meta-learning based adaptability to novel patterns. In addition, we also argue that the existing meta-training task construction inherently suffers from the memorization overfitting issue, which inevitably hinders meta-generalization to new users. In response to the aforementioned issues, we propose a preference learning decoupling framework, which is enhanced with meta-augmentation (PDMA), for user cold-start recommendation. To rescue the meta-learning from unnecessary adaptation to common patterns, our framework decouples preference learning for a cold-start user into two complementary aspects: common preference transfer, and novel preference adaptation. To handle the memorization overfitting issue, we further propose to augment meta-training users by injecting attribute-based noises, to achieve mutually-exclusive tasks. Extensive experiments on benchmark datasets demonstrate that our framework achieves superior performance improvements against state-of-the-art methods. We also show that our proposed framework is effective in alleviating memorization overfitting.