Frame-level speech enhancement based on Wasserstein GAN

Peng Chuan, Tian Lan, M. Li, Sen Li, Qiao Liu
{"title":"Frame-level speech enhancement based on Wasserstein GAN","authors":"Peng Chuan, Tian Lan, M. Li, Sen Li, Qiao Liu","doi":"10.1117/12.2559619","DOIUrl":null,"url":null,"abstract":"Speech enhancement is a challenging and critical task in the speech processing research area. In this paper, we propose a novel speech enhancement model based on Wasserstein generative adversarial networks, called WSEM. The proposed model operates on frame-level speech segments by using an adjacent frames extension mechanism, to enforce the mapping from noisy speech to the clean target, which makes it distinctly different from other related GAN-based models. We compare the performance of WSEM with related works on benchmark datasets under different signal-to-noise (SNR) conditions, experimental results show that WSEM performs comparable to the state-of-the-art approaches in all the tests, and it performs especially well in low SNR environments.","PeriodicalId":415097,"journal":{"name":"International Conference on Signal Processing Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2559619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Speech enhancement is a challenging and critical task in the speech processing research area. In this paper, we propose a novel speech enhancement model based on Wasserstein generative adversarial networks, called WSEM. The proposed model operates on frame-level speech segments by using an adjacent frames extension mechanism, to enforce the mapping from noisy speech to the clean target, which makes it distinctly different from other related GAN-based models. We compare the performance of WSEM with related works on benchmark datasets under different signal-to-noise (SNR) conditions, experimental results show that WSEM performs comparable to the state-of-the-art approaches in all the tests, and it performs especially well in low SNR environments.
基于Wasserstein GAN的帧级语音增强
语音增强是语音处理研究领域中一个具有挑战性和关键性的课题。在本文中,我们提出了一种新的基于Wasserstein生成对抗网络的语音增强模型,称为WSEM。该模型通过使用相邻帧扩展机制对帧级语音段进行操作,以强制从噪声语音到干净目标的映射,这与其他相关的基于gan的模型有明显的不同。在不同信噪比(SNR)条件下,我们将WSEM与相关研究成果在基准数据集上的性能进行了比较,实验结果表明,WSEM在所有测试中的性能都与最先进的方法相当,并且在低信噪比环境下表现得尤为出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信