Enhancements on a Transition-Based Approach for AMR Parsing Using LSTM Networks

Roxana Pop, Anda Dregan, F. Macicasan, C. Lemnaru, R. Potolea
{"title":"Enhancements on a Transition-Based Approach for AMR Parsing Using LSTM Networks","authors":"Roxana Pop, Anda Dregan, F. Macicasan, C. Lemnaru, R. Potolea","doi":"10.1109/ICCP.2018.8516606","DOIUrl":null,"url":null,"abstract":"This work proposes two enhancements to a system of generating Meaning Representations (AMR) graphs from English textual data. We first enhance a transition-based approach with additional actions that aim to handle particularities in the structure of the AMR. We analyze actions to address multi-aligned nodes and non-projective word orders, and explore several algorithms for action sequence generation, which incorporate the newly proposed actions. Secondly, we explore strategies for tackling AMR re-entrant concepts, which represent co-references in the associated textual data. We choose to handle co-reference detection and resolution via specific pre-processing and post-processing operations.","PeriodicalId":259007,"journal":{"name":"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2018.8516606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work proposes two enhancements to a system of generating Meaning Representations (AMR) graphs from English textual data. We first enhance a transition-based approach with additional actions that aim to handle particularities in the structure of the AMR. We analyze actions to address multi-aligned nodes and non-projective word orders, and explore several algorithms for action sequence generation, which incorporate the newly proposed actions. Secondly, we explore strategies for tackling AMR re-entrant concepts, which represent co-references in the associated textual data. We choose to handle co-reference detection and resolution via specific pre-processing and post-processing operations.
使用LSTM网络的基于转换的AMR解析方法的增强
这项工作提出了两个增强系统生成的意义表示(AMR)图从英语文本数据。我们首先使用旨在处理AMR结构中的特殊性的附加操作来增强基于转换的方法。我们分析了动作以解决多对齐节点和非投影词序,并探索了几种包含新提议动作的动作序列生成算法。其次,我们探讨了处理AMR可重入概念的策略,这些概念表示相关文本数据中的共同引用。我们选择通过特定的预处理和后处理操作来处理共参检测和分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信