Generative-Adversarial-Network-Guided Well-Aware Placement for Analog Circuits

Keren Zhu, Hao Chen, Mingjie Liu, Xiyuan Tang, Wei Shi, Nan Sun, D. Pan
{"title":"Generative-Adversarial-Network-Guided Well-Aware Placement for Analog Circuits","authors":"Keren Zhu, Hao Chen, Mingjie Liu, Xiyuan Tang, Wei Shi, Nan Sun, D. Pan","doi":"10.1109/asp-dac52403.2022.9712592","DOIUrl":null,"url":null,"abstract":"Generating wells for transistors is an essential challenge in analog circuit layout synthesis. While it is closely related to analog placement, very little research has explicitly considered well generation within the placement process. In this work, we propose a new analytical well-aware analog placer. It uses a generative adversarial network (GAN) for generating wells and guides the placement process. A global placement algorithm spreads the modules given the GAN guidance and optimizes for area and wirelength. Well-aware legalization techniques then legalize the global placement results and produce the final placement solutions. By allowing well sharing between transistors and explicitly considering wells in placement, the proposed framework achieves more than 74% improvement in the area and more than 26% reduction in half-perimeter wirelength over existing placement methodologies in experimental results.","PeriodicalId":239260,"journal":{"name":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/asp-dac52403.2022.9712592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Generating wells for transistors is an essential challenge in analog circuit layout synthesis. While it is closely related to analog placement, very little research has explicitly considered well generation within the placement process. In this work, we propose a new analytical well-aware analog placer. It uses a generative adversarial network (GAN) for generating wells and guides the placement process. A global placement algorithm spreads the modules given the GAN guidance and optimizes for area and wirelength. Well-aware legalization techniques then legalize the global placement results and produce the final placement solutions. By allowing well sharing between transistors and explicitly considering wells in placement, the proposed framework achieves more than 74% improvement in the area and more than 26% reduction in half-perimeter wirelength over existing placement methodologies in experimental results.
模拟电路的生成对抗网络导向的良好感知布局
在模拟电路布局合成中,晶体管井的生成是一个重要的挑战。虽然它与模拟布置密切相关,但很少有研究明确考虑在布置过程中生成井。在这项工作中,我们提出了一种新的分析型高感知模拟砂矿。它使用生成对抗网络(GAN)来生成井并指导放置过程。在GAN引导下,采用全局布局算法对模块进行布局,并对面积和波长进行优化。熟悉的合法化技术然后使全球安置结果合法化,并产生最终的安置解决方案。通过允许晶体管之间的井共享并明确考虑井的放置,在实验结果中,与现有的放置方法相比,所提出的框架在面积上提高了74%以上,在半周长度上减少了26%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信