{"title":"Identifying Mixture Copula Components Using Outlier Detection Methods and Goodness-of-Fit Tests","authors":"Gregor N. F. Weiß","doi":"10.2139/ssrn.1927881","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of outlier detection methods from robust statistics and copula goodness-of-fit tests to identify components of mixture copulas. We first consider simulated data samples in which the true dependence structure is given by a mixture of two parametric copulas: one copula that is presumed to represent the true dependence structure and one disturbing copula. The Monte Carlo simulations show that the goodness-of-fit tests we consider lose significantly in power when applied to mixtures of copulas with different tail dependence. Several goodness-of-fit tests are shown to hold their nominal level when multivariate outliers are excluded, although this improvement comes at the price of a further loss in the tests' power. The usefulness of excluding outliers in copula goodness-of-fit testing is exemplified in an empirical risk management application.","PeriodicalId":431629,"journal":{"name":"Econometrics: Applied Econometric Modeling in Financial Economics eJournal","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Applied Econometric Modeling in Financial Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1927881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper proposes the use of outlier detection methods from robust statistics and copula goodness-of-fit tests to identify components of mixture copulas. We first consider simulated data samples in which the true dependence structure is given by a mixture of two parametric copulas: one copula that is presumed to represent the true dependence structure and one disturbing copula. The Monte Carlo simulations show that the goodness-of-fit tests we consider lose significantly in power when applied to mixtures of copulas with different tail dependence. Several goodness-of-fit tests are shown to hold their nominal level when multivariate outliers are excluded, although this improvement comes at the price of a further loss in the tests' power. The usefulness of excluding outliers in copula goodness-of-fit testing is exemplified in an empirical risk management application.