Voice conversion based on empirical conditional distribution in resource-limited scenarios

N. Xu, Yibin Tang, J. Bao, Xiao Yao, A. Jiang, Xiaofeng Liu
{"title":"Voice conversion based on empirical conditional distribution in resource-limited scenarios","authors":"N. Xu, Yibin Tang, J. Bao, Xiao Yao, A. Jiang, Xiaofeng Liu","doi":"10.1109/ICCE-TW.2015.7216839","DOIUrl":null,"url":null,"abstract":"In this paper, a computationally efficient voice conversion system has been designed in order to improve the performance in resource-limited scenarios. First, mixtures of Gaussians (MoGs) at fixed locations of Mel frequencies have been used to represent the spectrum of STRAIGHT compactly. Second, the key conditional distributions for prediction are approximated by building histograms of aligned features empirically. Experiments have confirmed that our proposed method can obtain fairly good results compared to the traditional method without huge computational costs.","PeriodicalId":340402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics - Taiwan","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2015.7216839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a computationally efficient voice conversion system has been designed in order to improve the performance in resource-limited scenarios. First, mixtures of Gaussians (MoGs) at fixed locations of Mel frequencies have been used to represent the spectrum of STRAIGHT compactly. Second, the key conditional distributions for prediction are approximated by building histograms of aligned features empirically. Experiments have confirmed that our proposed method can obtain fairly good results compared to the traditional method without huge computational costs.
资源受限场景下基于经验条件分布的语音转换
为了在资源有限的情况下提高语音转换系统的性能,本文设计了一个计算效率高的语音转换系统。首先,在Mel频率的固定位置使用高斯混合(mog)来表示STRAIGHT的紧凑频谱。其次,通过经验构建对齐特征的直方图来近似预测关键条件分布。实验证明,与传统方法相比,我们的方法可以获得相当好的结果,而且计算成本不高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信