Probabilistic selection in cellular genetic algorithm

Hann-Huei Foong, S. K. Leow, T. Ong
{"title":"Probabilistic selection in cellular genetic algorithm","authors":"Hann-Huei Foong, S. K. Leow, T. Ong","doi":"10.1109/ICNC.2012.6234715","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new selection operator, namely, a Probabilistic Selection operator which allows us to control the selection pressure in cellular genetic algorithms through reducing the effective neighborhood radius. One advantage for having probabilistic selection is that, once we have our probability density function in hand, we can apply it on any type of neighborhoods. The main idea of this selection operator is that, as we move away from the center of the neighborhood, the probability of an individual is selected as parent will get lower. We will first discuss the general idea of how we implement this selection algorithm into the cellular genetic algorithm. We then conduct experiments on several combinatorial optimization benchmark problems in order to show its performance. Finally, we will briefly discuss about our further work on self-adaptive capability.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a new selection operator, namely, a Probabilistic Selection operator which allows us to control the selection pressure in cellular genetic algorithms through reducing the effective neighborhood radius. One advantage for having probabilistic selection is that, once we have our probability density function in hand, we can apply it on any type of neighborhoods. The main idea of this selection operator is that, as we move away from the center of the neighborhood, the probability of an individual is selected as parent will get lower. We will first discuss the general idea of how we implement this selection algorithm into the cellular genetic algorithm. We then conduct experiments on several combinatorial optimization benchmark problems in order to show its performance. Finally, we will briefly discuss about our further work on self-adaptive capability.
细胞遗传算法中的概率选择
本文引入了一种新的选择算子,即概率选择算子,通过减小有效邻域半径来控制细胞遗传算法的选择压力。概率选择的一个优点是,一旦我们有了概率密度函数,我们就可以把它应用到任何类型的邻域上。这个选择算子的主要思想是,当我们远离邻域中心时,一个个体被选为父节点的概率就会降低。我们将首先讨论如何将这种选择算法实现到细胞遗传算法中的一般思想。然后,我们对几个组合优化基准问题进行了实验,以展示其性能。最后,简要讨论了自适应能力的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信