{"title":"Factorial Moments in Complex Systems","authors":"Laurent Schoeffel","doi":"10.2139/ssrn.1955253","DOIUrl":null,"url":null,"abstract":"Factorial moments are convenient tools in particle physics to characterize the multiplicity distributions when phase-space resolution ($\\Delta$) becomes small. They include all correlations within the system of particles and represent integral characteristics of any correlation between these particles. In this letter, we show a direct comparison between high energy physics and quantitative finance results. Both for physics and finance, we illustrate that correlations between particles lead to a broadening of the multiplicity distribution and to dynamical fluctuations when the resolution becomes small enough. From the generating function of factorial moments, we make a prediction on the gap probability for sequences of returns of positive or negative signs. The gap is defined as the number of consecutive positive returns after a negative return, thus this is a gap in negative return. Inversely for a gap in positive return. Then, the gap probability is shown to be exponentially suppressed within the gap size. We confirm this prediction with data.","PeriodicalId":366327,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Financial Economics (Topic)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Financial Economics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1955253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Factorial moments are convenient tools in particle physics to characterize the multiplicity distributions when phase-space resolution ($\Delta$) becomes small. They include all correlations within the system of particles and represent integral characteristics of any correlation between these particles. In this letter, we show a direct comparison between high energy physics and quantitative finance results. Both for physics and finance, we illustrate that correlations between particles lead to a broadening of the multiplicity distribution and to dynamical fluctuations when the resolution becomes small enough. From the generating function of factorial moments, we make a prediction on the gap probability for sequences of returns of positive or negative signs. The gap is defined as the number of consecutive positive returns after a negative return, thus this is a gap in negative return. Inversely for a gap in positive return. Then, the gap probability is shown to be exponentially suppressed within the gap size. We confirm this prediction with data.