Internal Adequacy of Bookkeeping in Coq

Alberto Ciaffaglione, Ivan Scagnetto
{"title":"Internal Adequacy of Bookkeeping in Coq","authors":"Alberto Ciaffaglione, Ivan Scagnetto","doi":"10.1145/2631172.2631180","DOIUrl":null,"url":null,"abstract":"We focus on a common problem encountered in encoding and formally reasoning about a wide range of formal systems, namely, the representation of a typing environment. In particular, we apply the bookkeeping technique to a well-known case study (i.e., System F<:'s type language), proving in Coq an internal correspondence with a more standard representation of the typing environment as a list of pairs.\n In order to keep the signature readable and concise, we make use of higher-order abstract syntax (HOAS), which allows us to deal smoothly with the representation of the universal binder of System F<: type language.","PeriodicalId":262518,"journal":{"name":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2631172.2631180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We focus on a common problem encountered in encoding and formally reasoning about a wide range of formal systems, namely, the representation of a typing environment. In particular, we apply the bookkeeping technique to a well-known case study (i.e., System F<:'s type language), proving in Coq an internal correspondence with a more standard representation of the typing environment as a list of pairs. In order to keep the signature readable and concise, we make use of higher-order abstract syntax (HOAS), which allows us to deal smoothly with the representation of the universal binder of System F<: type language.
Coq内部记账充分性
我们关注在编码和形式推理中遇到的一个常见问题,即对各种形式系统的表示,即类型环境的表示。特别是,我们将簿记技术应用于一个著名的案例研究(即System F<:的类型语言),在Coq中证明了与更标准的类型环境表示(作为对列表)的内部对应关系。为了保持签名的可读性和简洁性,我们使用了高阶抽象语法(HOAS),它使我们能够顺利地处理System F<:类型语言的通用绑定的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信