Adaptation Bounds for Confidence Bands under Self-Similarity

Timothy B. Armstrong
{"title":"Adaptation Bounds for Confidence Bands under Self-Similarity","authors":"Timothy B. Armstrong","doi":"10.2139/ssrn.3423277","DOIUrl":null,"url":null,"abstract":"We derive bounds on the scope for a confidence band to adapt to the unknown regularity of a nonparametric function that is observed with noise, such as a regression function or density, under the self-similarity condition proposed by Gine and Nickl (2010). We find that adaptation can only be achieved up to a term that depends on the choice of the constant used to define self-similarity, and that this term becomes arbitrarily large for conservative choices of the self-similarity constant. We construct a confidence band that achieves this bound, up to a constant term that does not depend on the self-similarity constant. Our results suggest that care must be taken in choosing and interpreting the constant that defines self-similarity, since the dependence of adaptive confidence bands on this constant cannot be made to disappear asymptotically.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3423277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We derive bounds on the scope for a confidence band to adapt to the unknown regularity of a nonparametric function that is observed with noise, such as a regression function or density, under the self-similarity condition proposed by Gine and Nickl (2010). We find that adaptation can only be achieved up to a term that depends on the choice of the constant used to define self-similarity, and that this term becomes arbitrarily large for conservative choices of the self-similarity constant. We construct a confidence band that achieves this bound, up to a constant term that does not depend on the self-similarity constant. Our results suggest that care must be taken in choosing and interpreting the constant that defines self-similarity, since the dependence of adaptive confidence bands on this constant cannot be made to disappear asymptotically.
自相似条件下置信带的自适应界
在Gine和Nickl(2010)提出的自相似条件下,我们推导了置信带范围的界限,以适应带有噪声的非参数函数(如回归函数或密度)的未知规律性。我们发现,适应只能达到一个依赖于用于定义自相似性的常数的选择的项,并且对于自相似性常数的保守选择,该项变得任意大。我们构造了一个置信带来达到这个边界,直到一个不依赖于自相似常数的常数项。我们的结果表明,在选择和解释定义自相似性的常数时必须小心,因为自适应置信带对该常数的依赖不能渐近消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信