SOFTWARE EFFORT ESTIMATION USING GENETIC ALGORITHM

B. MariKumar, P. Latha, E. Praynlin
{"title":"SOFTWARE EFFORT ESTIMATION USING GENETIC ALGORITHM","authors":"B. MariKumar, P. Latha, E. Praynlin","doi":"10.18000/IJISAC.50142","DOIUrl":null,"url":null,"abstract":"Mari Kumar B1, Dr. Latha P2, Praynlin E3 1,3Government College of Engineering, Tirunelveli, India 2 Department of Computer Science and Engineering, Anna University 1marikumar106@gmail.com, 2plathamuthuraj@gmail.com, 3praynlin25@gmail.com Abstract A feed forward back propagation neural network is most commonly used to the form of artificial neural network. This algorithm being a correct procedure, it accurate result in the neural network. The estimate of this method as the training of Neural Network is compared with that of genetic algorithm, that the form of based on estimate the software effort estimation. The comparison of two methods is used to accuracy of the software effort estimation.","PeriodicalId":121456,"journal":{"name":"International Journal on Information Sciences and Computing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Information Sciences and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18000/IJISAC.50142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mari Kumar B1, Dr. Latha P2, Praynlin E3 1,3Government College of Engineering, Tirunelveli, India 2 Department of Computer Science and Engineering, Anna University 1marikumar106@gmail.com, 2plathamuthuraj@gmail.com, 3praynlin25@gmail.com Abstract A feed forward back propagation neural network is most commonly used to the form of artificial neural network. This algorithm being a correct procedure, it accurate result in the neural network. The estimate of this method as the training of Neural Network is compared with that of genetic algorithm, that the form of based on estimate the software effort estimation. The comparison of two methods is used to accuracy of the software effort estimation.
利用遗传算法估算软件工作量
Mari Kumar B1,博士Latha P2, Praynlin E3 1,3印度Tirunelveli政府工程学院2安娜大学计算机科学与工程系1marikumar106@gmail.com, 2plathamuthuraj@gmail.com, 3praynlin25@gmail.com摘要前馈-反传播神经网络是人工神经网络中最常用的一种形式。该算法是一个正确的过程,在神经网络中得到了准确的结果。将该方法作为神经网络训练的估计方法与遗传算法的估计方法进行了比较,发现基于估计的形式是基于软件工作量估计。通过对两种方法的比较,提高了软件工作量估算的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信