Scaling application properties to exascale

Giovanni Mariani, Andreea Anghel, R. Jongerius, G. Dittmann
{"title":"Scaling application properties to exascale","authors":"Giovanni Mariani, Andreea Anghel, R. Jongerius, G. Dittmann","doi":"10.1145/2742854.2742860","DOIUrl":null,"url":null,"abstract":"Exascale computing systems will execute computationally intensive tasks on unprecedented amounts of data. Tuning the design of such systems for a specific application or for an application domain is a challenging task as it is not yet possible to analyze the actual run-time behavior of exascale applications. Run-time properties, such as the memory access pattern, the available instruction-level parallelism and the instruction mix, are valuable information for architects to tune the processing elements, the memory system and the communication infrastructure. We propose a methodology for extrapolating application properties at exascale from an analysis of workload sizes feasible on current systems. The methodology is suitable for applications scaling over different parameters (e.g., the number of vertices and edges represent two parameters in a graph algorithm). The proposed methodology combines a) a statistically sound approach for model selection and b) knowledge coming from computational theory, such as the order of complexity of the application under analysis. Compared with state-of-the-art techniques, the proposed methodology reduces the prediction error by an order of magnitude on the instruction count and improves the accuracy of memory access pattern prediction by up to 1.3×.","PeriodicalId":417279,"journal":{"name":"Proceedings of the 12th ACM International Conference on Computing Frontiers","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742854.2742860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Exascale computing systems will execute computationally intensive tasks on unprecedented amounts of data. Tuning the design of such systems for a specific application or for an application domain is a challenging task as it is not yet possible to analyze the actual run-time behavior of exascale applications. Run-time properties, such as the memory access pattern, the available instruction-level parallelism and the instruction mix, are valuable information for architects to tune the processing elements, the memory system and the communication infrastructure. We propose a methodology for extrapolating application properties at exascale from an analysis of workload sizes feasible on current systems. The methodology is suitable for applications scaling over different parameters (e.g., the number of vertices and edges represent two parameters in a graph algorithm). The proposed methodology combines a) a statistically sound approach for model selection and b) knowledge coming from computational theory, such as the order of complexity of the application under analysis. Compared with state-of-the-art techniques, the proposed methodology reduces the prediction error by an order of magnitude on the instruction count and improves the accuracy of memory access pattern prediction by up to 1.3×.
将应用程序属性缩放到百亿亿级
百亿亿次计算系统将在前所未有的数据量上执行计算密集型任务。为特定应用程序或应用程序域调优此类系统的设计是一项具有挑战性的任务,因为尚不可能分析百亿亿级应用程序的实际运行时行为。运行时属性,如内存访问模式、可用的指令级并行性和指令组合,对于架构师调优处理元素、内存系统和通信基础设施是有价值的信息。我们提出了一种方法,通过分析当前系统上可行的工作负载大小来推断百亿亿级应用程序的属性。该方法适用于在不同参数上缩放的应用程序(例如,顶点和边的数量表示图算法中的两个参数)。所提出的方法结合了a)统计上合理的模型选择方法和b)来自计算理论的知识,例如分析应用程序的复杂程度。与现有技术相比,该方法在指令数上的预测误差降低了一个数量级,并将内存访问模式预测的准确性提高了1.3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信