A Deep Learning framework for Interoperable Machine Learning

Shakkeel Ahmed, Prakash Bisht, Ravi Mula, S. Dhavala
{"title":"A Deep Learning framework for Interoperable Machine Learning","authors":"Shakkeel Ahmed, Prakash Bisht, Ravi Mula, S. Dhavala","doi":"10.1145/3486001.3486243","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an opinionated, extensible, Python framework that transpiles variety of classical Statistical and Machine Learning models onto Open Neural Network Exchange (ONNX) format via an underlying Deep Learning model. We achieve this by exploiting the compositionality of Deep Learning technology. By appropriately choosing the features, architecture, loss functions, and regularizers, among others, the fidelity between the source model and the target model can be specified. Depending on the model being transpiled, the fidelity can be exact or approximate. We present the design details, APIs of the framework, reference implementations, road map for development, and guidelines for contributions. A reference implementation is available for the popular scikit-learn APIs.","PeriodicalId":266754,"journal":{"name":"Proceedings of the First International Conference on AI-ML Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Conference on AI-ML Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486001.3486243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we introduce an opinionated, extensible, Python framework that transpiles variety of classical Statistical and Machine Learning models onto Open Neural Network Exchange (ONNX) format via an underlying Deep Learning model. We achieve this by exploiting the compositionality of Deep Learning technology. By appropriately choosing the features, architecture, loss functions, and regularizers, among others, the fidelity between the source model and the target model can be specified. Depending on the model being transpiled, the fidelity can be exact or approximate. We present the design details, APIs of the framework, reference implementations, road map for development, and guidelines for contributions. A reference implementation is available for the popular scikit-learn APIs.
面向互操作机器学习的深度学习框架
在本文中,我们介绍了一个固执己见的,可扩展的Python框架,该框架通过底层深度学习模型将各种经典统计和机器学习模型转换为开放神经网络交换(ONNX)格式。我们通过利用深度学习技术的组合性来实现这一点。通过适当地选择特征、体系结构、损失函数和正则器等,可以指定源模型和目标模型之间的保真度。根据被转译的模型,保真度可以是精确的或近似的。我们提供了设计细节、框架的api、参考实现、开发路线图和贡献指南。流行的scikit-learn api有一个参考实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信