Benchmarking Fortran DO CONCURRENT on CPUs and GPUs Using BabelStream

J. Hammond, Tom Deakin, J. Cownie, Simon McIntosh-Smith
{"title":"Benchmarking Fortran DO CONCURRENT on CPUs and GPUs Using BabelStream","authors":"J. Hammond, Tom Deakin, J. Cownie, Simon McIntosh-Smith","doi":"10.1109/PMBS56514.2022.00013","DOIUrl":null,"url":null,"abstract":"Fortran DO CONCURRENT has emerged as a new way to achieve parallel execution of loops on CPUs and GPUs. This paper studies the performance portability of this construct on a range of processors and compares it with the incumbent models: OpenMP, OpenACC and CUDA. To do this study fairly, we implemented the BabelStream memory bandwidth benchmark from scratch, entirely in modern Fortran, for all of the models considered, which include Fortran DO CONCURRENT, as well as two variants of OpenACC, four variants of OpenMP (2 CPU and 2 GPU), CUDA Fortran, and both loop- and array-based references. BabelStream Fortran matches the C++ implementation as closely as possible, and can be used to make language-based comparisons. This paper represents one of the first detailed studies of the performance of Fortran support on heterogeneous architectures; we include results for AArch64 and x86_64 CPUs as well as AMD, Intel and NVIDIA GPU platforms.","PeriodicalId":321991,"journal":{"name":"2022 IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMBS56514.2022.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Fortran DO CONCURRENT has emerged as a new way to achieve parallel execution of loops on CPUs and GPUs. This paper studies the performance portability of this construct on a range of processors and compares it with the incumbent models: OpenMP, OpenACC and CUDA. To do this study fairly, we implemented the BabelStream memory bandwidth benchmark from scratch, entirely in modern Fortran, for all of the models considered, which include Fortran DO CONCURRENT, as well as two variants of OpenACC, four variants of OpenMP (2 CPU and 2 GPU), CUDA Fortran, and both loop- and array-based references. BabelStream Fortran matches the C++ implementation as closely as possible, and can be used to make language-based comparisons. This paper represents one of the first detailed studies of the performance of Fortran support on heterogeneous architectures; we include results for AArch64 and x86_64 CPUs as well as AMD, Intel and NVIDIA GPU platforms.
使用BabelStream在cpu和gpu上测试Fortran DO并发
Fortran DO CONCURRENT是在cpu和gpu上实现循环并行执行的一种新方法。本文研究了该结构在一系列处理器上的性能可移植性,并将其与现有模型:OpenMP, OpenACC和CUDA进行了比较。为了公平地进行这项研究,我们从头开始实现了BabelStream内存带宽基准测试,完全在现代Fortran中,对于所有考虑的模型,包括Fortran do CONCURRENT,以及OpenACC的两个变体,OpenMP的四个变体(2 CPU和2 GPU), CUDA Fortran,以及基于循环和数组的引用。BabelStream Fortran尽可能地与c++实现匹配,并可用于进行基于语言的比较。本文是对异构体系结构上Fortran支持性能的首次详细研究之一;我们包括AArch64和x86_64 cpu以及AMD, Intel和NVIDIA GPU平台的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信