Weighted Linear Embedding and Its Applications to Finger-Knuckle-Print and Palmprint Recognition

Jun Yin, Jingbo Zhou, Zhong Jin, Jian Yang
{"title":"Weighted Linear Embedding and Its Applications to Finger-Knuckle-Print and Palmprint Recognition","authors":"Jun Yin, Jingbo Zhou, Zhong Jin, Jian Yang","doi":"10.1109/ETCHB.2010.5559291","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new linear feature extraction approach called Weighted Linear Embedding (WLE). WLE combines Fisher criterion with manifold learning criterion like local discriminant embedding analysis (LDE), whereas unlike LDE that only utilizes local neighbor information it uses local information and nonlocal information simultaneously. WLE is also unlike linear discriminant analysis (LDA) that treats local information and nonlocal information equally, and it uses these two kinds of information discriminatively by utilizing the Gaussian weighting. Hence, WLE is more powerful than LDA and LDE for feature extraction. Experimental results on the PolyU finger-knuckle-print database and the PolyU palmprint database indicate that our WLE algorithm outperforms principal components analysis (PCA), LDA and LDE.","PeriodicalId":174704,"journal":{"name":"2010 International Workshop on Emerging Techniques and Challenges for Hand-Based Biometrics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Workshop on Emerging Techniques and Challenges for Hand-Based Biometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCHB.2010.5559291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper we propose a new linear feature extraction approach called Weighted Linear Embedding (WLE). WLE combines Fisher criterion with manifold learning criterion like local discriminant embedding analysis (LDE), whereas unlike LDE that only utilizes local neighbor information it uses local information and nonlocal information simultaneously. WLE is also unlike linear discriminant analysis (LDA) that treats local information and nonlocal information equally, and it uses these two kinds of information discriminatively by utilizing the Gaussian weighting. Hence, WLE is more powerful than LDA and LDE for feature extraction. Experimental results on the PolyU finger-knuckle-print database and the PolyU palmprint database indicate that our WLE algorithm outperforms principal components analysis (PCA), LDA and LDE.
加权线性嵌入及其在指关节指纹和掌纹识别中的应用
本文提出了一种新的线性特征提取方法——加权线性嵌入。WLE将Fisher准则与局部判别嵌入分析(LDE)等流形学习准则相结合,不同于LDE只利用局部邻居信息,它同时利用了局部信息和非局部信息。WLE也不同于线性判别分析(LDA)对局部信息和非局部信息一视同仁,而是利用高斯加权对这两种信息进行判别。因此,在特征提取方面,WLE比LDA和LDE更强大。在理大指关节指纹数据库和掌纹数据库上的实验结果表明,该算法优于主成分分析、LDA和LDE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信