Numerical solution of a two-dimensional IHCP based on Duhamel's principle

R. Pourgholi, A. Esfahani, A. Saeedi
{"title":"Numerical solution of a two-dimensional IHCP based on Duhamel's principle","authors":"R. Pourgholi, A. Esfahani, A. Saeedi","doi":"10.5373/JARAM.1284.020112","DOIUrl":null,"url":null,"abstract":"In this paper, we will first study the existence and uniqueness of the solu- tion for a two-dimensional inverse heat conduction problem (IHCP). Furthermore, the estimate of an unknown boundary condition by a numerical algorithm in this IHCP based on Duhamel's principle, is the topic of this paper. The stability and accuracy of the scheme presented is evaluated by comparison with the Singular Value Decom- position method. Some numerical experiments confirm the utility of this algorithm as the results are in good agreement with the exact data.","PeriodicalId":114107,"journal":{"name":"The Journal of Advanced Research in Applied Mathematics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Advanced Research in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5373/JARAM.1284.020112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we will first study the existence and uniqueness of the solu- tion for a two-dimensional inverse heat conduction problem (IHCP). Furthermore, the estimate of an unknown boundary condition by a numerical algorithm in this IHCP based on Duhamel's principle, is the topic of this paper. The stability and accuracy of the scheme presented is evaluated by comparison with the Singular Value Decom- position method. Some numerical experiments confirm the utility of this algorithm as the results are in good agreement with the exact data.
基于Duhamel原理的二维IHCP的数值解
本文首先研究了一类二维逆热传导问题解的存在唯一性。此外,本文还研究了基于Duhamel原理的数值算法对未知边界条件的估计。通过与奇异值定位法的比较,评价了该方法的稳定性和精度。数值实验结果与实际数据吻合较好,证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信