Michael Holdgaard, T. Eriksen, A. Ravn, T. Andersen
{"title":"A distributed implementation of a mode switching control program","authors":"Michael Holdgaard, T. Eriksen, A. Ravn, T. Andersen","doi":"10.1109/EMWRTS.1995.514307","DOIUrl":null,"url":null,"abstract":"A distributed implementation of a mode switched control program for a robot is described. The design of the control program is given by a set of real-time automatons. One of them plans a schedule for switching between a fixed set of control functions, another dispatches the control functions according to the schedule, and a final one monitors the system for exceptions that shall lead to a halt. The implementation uses four transputers with a distribution of phases of the automatons over the individual processors. The main technical result of the paper is calculations that illustrate how to justify that the implementation meets real-time constraints.","PeriodicalId":156501,"journal":{"name":"Proceedings Seventh Euromicro Workshop on Real-Time Systems","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Seventh Euromicro Workshop on Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMWRTS.1995.514307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A distributed implementation of a mode switched control program for a robot is described. The design of the control program is given by a set of real-time automatons. One of them plans a schedule for switching between a fixed set of control functions, another dispatches the control functions according to the schedule, and a final one monitors the system for exceptions that shall lead to a halt. The implementation uses four transputers with a distribution of phases of the automatons over the individual processors. The main technical result of the paper is calculations that illustrate how to justify that the implementation meets real-time constraints.