Unsupervised white blood cell characterization in the latent space of a variational autoencoder

J. Tarquino, E. Romero
{"title":"Unsupervised white blood cell characterization in the latent space of a variational autoencoder","authors":"J. Tarquino, E. Romero","doi":"10.1117/12.2669746","DOIUrl":null,"url":null,"abstract":"Leukemia diagnosis and therapy planning are both based on classifying peripheral blood images, under a high inter/intra observer variability scenario. In such applications, automatic image processing and classification strategies have obtained outstanding recognition results, however they are fully dependent on the quality of the annotated data. Unlike supervised classification approaches which built upon label-transformations, the herein presented methodology introduces an unsupervised White Blood Cell characterization in the latent space of a Variational Autoencoder (VAE). The latent space is constructed upon 128 parameters from 64 gaussian distributions and then a k-means clustering may retrieve leukemia diagnostic meaningful cell groups. The whole procedure is twofold assessed: 1) evaluation of the 128 dimension VAE latent space for differentiating cells with higher diagnostic value (blast cells) from other peripheral blood components under multiple supervised classification strategies, and 2) quantification of VAE-parameter clustering capacity to unsupervised separation of blast and non-blast cells. Obtained accuracies of each experiment, 0.888 and 0.757 respectively, suggest that the presented strategy successfully characterizes white blood cells and provides a representation space where subtle cell differences can be objectively measured.","PeriodicalId":147201,"journal":{"name":"Symposium on Medical Information Processing and Analysis","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Medical Information Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2669746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Leukemia diagnosis and therapy planning are both based on classifying peripheral blood images, under a high inter/intra observer variability scenario. In such applications, automatic image processing and classification strategies have obtained outstanding recognition results, however they are fully dependent on the quality of the annotated data. Unlike supervised classification approaches which built upon label-transformations, the herein presented methodology introduces an unsupervised White Blood Cell characterization in the latent space of a Variational Autoencoder (VAE). The latent space is constructed upon 128 parameters from 64 gaussian distributions and then a k-means clustering may retrieve leukemia diagnostic meaningful cell groups. The whole procedure is twofold assessed: 1) evaluation of the 128 dimension VAE latent space for differentiating cells with higher diagnostic value (blast cells) from other peripheral blood components under multiple supervised classification strategies, and 2) quantification of VAE-parameter clustering capacity to unsupervised separation of blast and non-blast cells. Obtained accuracies of each experiment, 0.888 and 0.757 respectively, suggest that the presented strategy successfully characterizes white blood cells and provides a representation space where subtle cell differences can be objectively measured.
变分自编码器潜在空间中的无监督白细胞特征
白血病的诊断和治疗计划都是基于对外周血图像的分类,在观察者之间/内部高度可变性的情况下。在这些应用中,自动图像处理和分类策略获得了出色的识别效果,但它们完全依赖于标注数据的质量。与建立在标签变换基础上的监督分类方法不同,本文提出的方法在变分自编码器(VAE)的潜在空间中引入了无监督的白细胞特征。基于64个高斯分布的128个参数构建潜在空间,k-means聚类可以检索到白血病诊断有意义的细胞群。整个过程分为两部分:1)评估多种监督分类策略下具有较高诊断价值的细胞(胚细胞)与其他外周血成分区分的128维VAE潜空间;2)量化胚细胞与非胚细胞无监督分离的VAE参数聚类能力。每个实验获得的准确率分别为0.888和0.757,表明该策略成功地表征了白细胞,并提供了一个表征空间,可以客观地测量细微的细胞差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信