Combined dynamic data analysis and process variable prediction approach for system fault detection

B. Upadhyaya, O. Glöckler, F. Wolvaardt
{"title":"Combined dynamic data analysis and process variable prediction approach for system fault detection","authors":"B. Upadhyaya, O. Glöckler, F. Wolvaardt","doi":"10.1109/ICASSP.1987.1169881","DOIUrl":null,"url":null,"abstract":"A fault detection approach based on the combination of the Generalized Consistency Check and the Sequential Probability Ratio Test is developed and applied for validation of signals from process sensors. The basic methodology requires at least triple redundancy of a given measurement from like sensors and analytical measurements. The separate measurement of the signal mean value and the random fluctuation improves the reliability of fault identification and signal reconstruction. The diagnostics of the source of anomaly in a sub-system is performed by multivariate autoregressive modeling of the process signals and the analysis of resulting signatures.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A fault detection approach based on the combination of the Generalized Consistency Check and the Sequential Probability Ratio Test is developed and applied for validation of signals from process sensors. The basic methodology requires at least triple redundancy of a given measurement from like sensors and analytical measurements. The separate measurement of the signal mean value and the random fluctuation improves the reliability of fault identification and signal reconstruction. The diagnostics of the source of anomaly in a sub-system is performed by multivariate autoregressive modeling of the process signals and the analysis of resulting signatures.
结合动态数据分析和过程变量预测的系统故障检测方法
提出了一种基于广义一致性检验和序列概率比检验相结合的故障检测方法,并将其应用于过程传感器信号的验证。基本的方法要求至少三倍冗余的给定测量,如传感器和分析测量。信号均值和随机波动的分离测量提高了故障识别和信号重构的可靠性。子系统异常源的诊断是通过对过程信号进行多元自回归建模和对结果特征的分析来完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信