Low-Complexity Robust Adaptive Beamforming Algorithms Exploiting Shrinkage for Mismatch Estimation

H. Ruan, R. D. Lamare
{"title":"Low-Complexity Robust Adaptive Beamforming Algorithms Exploiting Shrinkage for Mismatch Estimation","authors":"H. Ruan, R. D. Lamare","doi":"10.1049/iet-spr.2014.0331","DOIUrl":null,"url":null,"abstract":"This paper proposes low-complexity robust adaptive beamforming (RAB) techniques based on shrinkage methods. We firstly briefly review a Low- Complexity Shrinkage-Based Mismatch Estimation (LOCSME) batch algorithm to estimate the desired signal steering vector mismatch, in which the interference-plus-noise covariance (INC) matrix is also estimated with a recursive matrix shrinkage method. Then we develop low complexity adaptive robust version of the conjugate gradient (CG) algorithm to both estimate the steering vector mismatch and update the beamforming weights. A computational complexity study of the proposed and existing algorithms is carried out. Simulations are conducted in local scattering scenarios and comparisons to existing RAB techniques are provided.","PeriodicalId":212668,"journal":{"name":"2015 Sensor Signal Processing for Defence (SSPD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sensor Signal Processing for Defence (SSPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-spr.2014.0331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper proposes low-complexity robust adaptive beamforming (RAB) techniques based on shrinkage methods. We firstly briefly review a Low- Complexity Shrinkage-Based Mismatch Estimation (LOCSME) batch algorithm to estimate the desired signal steering vector mismatch, in which the interference-plus-noise covariance (INC) matrix is also estimated with a recursive matrix shrinkage method. Then we develop low complexity adaptive robust version of the conjugate gradient (CG) algorithm to both estimate the steering vector mismatch and update the beamforming weights. A computational complexity study of the proposed and existing algorithms is carried out. Simulations are conducted in local scattering scenarios and comparisons to existing RAB techniques are provided.
利用收缩进行失配估计的低复杂度鲁棒自适应波束形成算法
提出了一种基于收缩方法的低复杂度鲁棒自适应波束形成(RAB)技术。我们首先简要回顾了一种基于低复杂度收缩的错配估计(LOCSME)批处理算法,该算法用于估计期望的信号转向向量错配,其中干涉加噪声协方差(INC)矩阵也使用递归矩阵收缩方法估计。然后,我们开发了低复杂度自适应鲁棒的共轭梯度(CG)算法来估计导向矢量失配和更新波束形成权重。对所提算法和现有算法的计算复杂度进行了研究。在局部散射情况下进行了模拟,并与现有的RAB技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信