Automated Classification of Sleep Apnea and Hypopnea on Polysomnography Data

Jyothsna Somanna, Deepika Joshi, Hiranmaya Gundu, G. Srinivasa
{"title":"Automated Classification of Sleep Apnea and Hypopnea on Polysomnography Data","authors":"Jyothsna Somanna, Deepika Joshi, Hiranmaya Gundu, G. Srinivasa","doi":"10.1109/BMEiCON47515.2019.8990338","DOIUrl":null,"url":null,"abstract":"Polysomnography (PSG) is a sleep study where multiple parameters of a subject are continuously monitored to detect sleep disorders that can have adverse health effects. This study uses Machine Learning techniques to automatically detect and classify apneas and hypopneas in PSG data. By incorporating features that sleep analysts look for in PSG data we present a machine learning based approach to automatically detect the presence of hypopnea or apnea and classify the type of pathology. This paper presents a visualization of the PSG study, explicates the design of features and provides a comparison between the approaches of learning from the computed features versus the signal directly. Our results demonstrate that a hierarchical SVM model trained on a small set of features yields an accuracy of 82.6% with a high precision of 86%.","PeriodicalId":213939,"journal":{"name":"2019 12th Biomedical Engineering International Conference (BMEiCON)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEiCON47515.2019.8990338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Polysomnography (PSG) is a sleep study where multiple parameters of a subject are continuously monitored to detect sleep disorders that can have adverse health effects. This study uses Machine Learning techniques to automatically detect and classify apneas and hypopneas in PSG data. By incorporating features that sleep analysts look for in PSG data we present a machine learning based approach to automatically detect the presence of hypopnea or apnea and classify the type of pathology. This paper presents a visualization of the PSG study, explicates the design of features and provides a comparison between the approaches of learning from the computed features versus the signal directly. Our results demonstrate that a hierarchical SVM model trained on a small set of features yields an accuracy of 82.6% with a high precision of 86%.
基于多导睡眠图数据的睡眠呼吸暂停和低通气的自动分类
多导睡眠图(PSG)是一项睡眠研究,通过连续监测受试者的多个参数来检测可能对健康产生不利影响的睡眠障碍。本研究使用机器学习技术自动检测和分类PSG数据中的呼吸暂停和呼吸不足。通过结合睡眠分析师在PSG数据中寻找的特征,我们提出了一种基于机器学习的方法来自动检测呼吸不足或呼吸暂停的存在,并对病理类型进行分类。本文展示了PSG研究的可视化,阐述了特征的设计,并提供了从计算特征和直接从信号中学习的方法之间的比较。我们的结果表明,在一小组特征上训练的分层支持向量机模型的准确率为82.6%,高精度为86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信