Modeling and analysis of Electric Network Frequency signal for timestamp verification

Ravi Garg, Avinash L. Varna, Min Wu
{"title":"Modeling and analysis of Electric Network Frequency signal for timestamp verification","authors":"Ravi Garg, Avinash L. Varna, Min Wu","doi":"10.1109/WIFS.2012.6412627","DOIUrl":null,"url":null,"abstract":"Electric Network Frequency (ENF) fluctuations based forensic analysis is recently proposed for time-of-recording estimation, timestamp verification, and clip insertion/deletion forgery detection in multimedia recordings. Due to the load control mechanism of the electric grid, ENF fluctuations exhibit pseudo-periodic behavior and generally require a long duration of recording for forensic analysis. In this paper, a statistical study of the ENF signal is conducted to model it using an autoregressive process. The proposed model is used to understand the effect of the ENF signal duration and signal-to-noise ratio on the detection performance of a timestamp verification system under a hypothesis detection framework. Based on the proposed model, a decorrelation based approach is studied to match the ENF signals for timestamp verification. The proposed approach requires a shorter duration of the ENF signal to achieve the same detection performance as without decorrelation. Experiments are conducted on audio data to demonstrate an improvement in the detection performance of the proposed approach.","PeriodicalId":396789,"journal":{"name":"2012 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS.2012.6412627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Electric Network Frequency (ENF) fluctuations based forensic analysis is recently proposed for time-of-recording estimation, timestamp verification, and clip insertion/deletion forgery detection in multimedia recordings. Due to the load control mechanism of the electric grid, ENF fluctuations exhibit pseudo-periodic behavior and generally require a long duration of recording for forensic analysis. In this paper, a statistical study of the ENF signal is conducted to model it using an autoregressive process. The proposed model is used to understand the effect of the ENF signal duration and signal-to-noise ratio on the detection performance of a timestamp verification system under a hypothesis detection framework. Based on the proposed model, a decorrelation based approach is studied to match the ENF signals for timestamp verification. The proposed approach requires a shorter duration of the ENF signal to achieve the same detection performance as without decorrelation. Experiments are conducted on audio data to demonstrate an improvement in the detection performance of the proposed approach.
用于时间戳验证的电网频率信号建模与分析
基于电子网络频率(ENF)波动的取证分析最近被提出用于多媒体记录的记录时间估计、时间戳验证和剪辑插入/删除伪造检测。由于电网的负荷控制机制,ENF波动表现出伪周期性,通常需要较长的记录时间进行取证分析。本文对ENF信号进行了统计研究,利用自回归过程对其进行建模。利用该模型研究了假设检测框架下ENF信号持续时间和信噪比对时间戳验证系统检测性能的影响。在此基础上,研究了一种基于去相关的ENF信号匹配时间戳验证方法。该方法需要更短的ENF信号持续时间,以达到与不去相关相同的检测性能。在音频数据上进行了实验,证明了该方法在检测性能上的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信