Parallel H4MSA for Multiple Sequence Alignment

Á. Rubio-Largo, M. A. Vega-Rodríguez, D. L. González-Álvarez
{"title":"Parallel H4MSA for Multiple Sequence Alignment","authors":"Á. Rubio-Largo, M. A. Vega-Rodríguez, D. L. González-Álvarez","doi":"10.1109/Trustcom.2015.639","DOIUrl":null,"url":null,"abstract":"Multiple Sequence Alignment (MSA) is the process of aligning three or more nucleotides/amino-acids sequences at the same time. It is an NP-complete optimization problem where the time complexity of finding an optimal alignment raises exponentially when the number of sequences to align increases. In the multiobjective version of the MSA problem, we simultaneously optimize the alignment accuracy and conservation. In this work, we present a parallel scheme for a multiobjective version of a memetic metaheuristic: Hybrid Multiobjective Memetic Metaheuristics for Multiple Sequence Alignment (H4MSA). In order to evaluate the parallel performance of H4MSA, we use several datasets with different number of sequences (up to 1000 sequences) and compare its parallel performance against other well-known parallel approaches published in the literature, such as MSAProbs, T-Coffee, Clustal O and MAFFT. On the other hand, the results reveals that parallel H4MSA is around 25 times faster than the sequential version with 32 cores.","PeriodicalId":277092,"journal":{"name":"2015 IEEE Trustcom/BigDataSE/ISPA","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Trustcom/BigDataSE/ISPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Trustcom.2015.639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Multiple Sequence Alignment (MSA) is the process of aligning three or more nucleotides/amino-acids sequences at the same time. It is an NP-complete optimization problem where the time complexity of finding an optimal alignment raises exponentially when the number of sequences to align increases. In the multiobjective version of the MSA problem, we simultaneously optimize the alignment accuracy and conservation. In this work, we present a parallel scheme for a multiobjective version of a memetic metaheuristic: Hybrid Multiobjective Memetic Metaheuristics for Multiple Sequence Alignment (H4MSA). In order to evaluate the parallel performance of H4MSA, we use several datasets with different number of sequences (up to 1000 sequences) and compare its parallel performance against other well-known parallel approaches published in the literature, such as MSAProbs, T-Coffee, Clustal O and MAFFT. On the other hand, the results reveals that parallel H4MSA is around 25 times faster than the sequential version with 32 cores.
并行H4MSA多序列比对
多序列比对(Multiple Sequence Alignment, MSA)是指同时对三个或三个以上的核苷酸/氨基酸序列进行比对的过程。这是一个np完全优化问题,当需要对齐的序列数量增加时,寻找最优对齐的时间复杂度呈指数增长。在多目标版本的MSA问题中,我们同时优化了对准精度和守恒。在这项工作中,我们提出了一个模因元启发式的多目标版本的并行方案:混合多目标模因元启发式多序列比对(H4MSA)。为了评估H4MSA的并行性能,我们使用了几个具有不同序列数(最多1000个序列)的数据集,并将其并行性能与文献中发表的其他知名并行方法(如MSAProbs, T-Coffee, Clustal O和MAFFT)进行了比较。另一方面,结果显示并行H4MSA比32核的顺序版本快25倍左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信