Additively Manufactured Dry Electrodes for Biosignal Measurements

Gerrit Bücken, T. Friedrich, R. Kusche
{"title":"Additively Manufactured Dry Electrodes for Biosignal Measurements","authors":"Gerrit Bücken, T. Friedrich, R. Kusche","doi":"10.1109/BSN56160.2022.9928526","DOIUrl":null,"url":null,"abstract":"The acquisition of electrophysiological signals, such as electrocardiography or electromyography, is an integral part of medical diagnostics and therapy. In the clinical environment, these signals are typically recorded using adhesive gel electrodes which have particularly good electrical characteristics. Outside this environment, however, these electrodes are not practical, since they have to be placed manually and can only be used once. Instead, the use of dry electrodes can be beneficial, especially in complex systems such as wearables or prostheses. Unfortunately, these electrodes are not widely commercially available and their electrical characteristics are hardly documented. One major challenge is the occurring high interface impedance between the electrode and the skin. In this study, dry electrodes with different contact surfaces made of conductive polylactide acid are designed, additively manufactured and the corresponding electrode-skin impedances are examined on human subjects. The influences of different electrode radii as well as surface structures on the electrode-skin interface impedance are compared with each other. The result of the investigation is that the impedance decreases as the contact area increases, which corresponds to the electrical equivalent circuit. However, the chosen structuring of the surface has a negative impact on the impedance, although the effective electrode surface was expected to be increased.","PeriodicalId":150990,"journal":{"name":"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN56160.2022.9928526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The acquisition of electrophysiological signals, such as electrocardiography or electromyography, is an integral part of medical diagnostics and therapy. In the clinical environment, these signals are typically recorded using adhesive gel electrodes which have particularly good electrical characteristics. Outside this environment, however, these electrodes are not practical, since they have to be placed manually and can only be used once. Instead, the use of dry electrodes can be beneficial, especially in complex systems such as wearables or prostheses. Unfortunately, these electrodes are not widely commercially available and their electrical characteristics are hardly documented. One major challenge is the occurring high interface impedance between the electrode and the skin. In this study, dry electrodes with different contact surfaces made of conductive polylactide acid are designed, additively manufactured and the corresponding electrode-skin impedances are examined on human subjects. The influences of different electrode radii as well as surface structures on the electrode-skin interface impedance are compared with each other. The result of the investigation is that the impedance decreases as the contact area increases, which corresponds to the electrical equivalent circuit. However, the chosen structuring of the surface has a negative impact on the impedance, although the effective electrode surface was expected to be increased.
用于生物信号测量的快速制造干电极
心电图或肌电图等电生理信号的采集是医疗诊断和治疗不可或缺的一部分。在临床环境中,这些信号通常使用电气特性特别好的粘性凝胶电极进行记录。然而,在这种环境之外,这些电极并不实用,因为它们必须手动放置,而且只能使用一次。相反,干电极的使用会带来好处,尤其是在可穿戴设备或假肢等复杂系统中。遗憾的是,这些电极在市场上并不多见,其电气特性也几乎没有记录。其中一个主要挑战是电极与皮肤之间存在较高的界面阻抗。在这项研究中,我们设计了由导电聚乳酸制成的具有不同接触面的干电极,并对其进行了加成制造,同时在人体上检测了相应的电极-皮肤阻抗。比较了不同电极半径和表面结构对电极-皮肤界面阻抗的影响。研究结果表明,阻抗随着接触面积的增大而减小,这与电气等效电路相符。然而,尽管预期有效电极表面会增加,但所选择的表面结构对阻抗有负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信