{"title":"Game theoretic data association for multi-target tracking with varying number of targets","authors":"Abdullahi Daniyan, Yu Gong, S. Lambotharan","doi":"10.1109/RADAR.2016.7485219","DOIUrl":null,"url":null,"abstract":"We investigate a game theoretic data association technique for multi-target tracking (MTT) with varying number of targets. The problem of target state-estimate-to-track data association has been considered. We use the SMC-PHD filter to handle the MTT aspect and obtain target state estimates. We model the interaction between target tracks as a game by considering them as players and the set of target state estimates as strategies. Utility functions for the players are defined and a regret-based learning algorithm with a forgetting factor is used to find the equilibrium of the game. Simulation results are presented to demonstrate the performance of the proposed technique.","PeriodicalId":185932,"journal":{"name":"2016 IEEE Radar Conference (RadarConf)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Radar Conference (RadarConf)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2016.7485219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We investigate a game theoretic data association technique for multi-target tracking (MTT) with varying number of targets. The problem of target state-estimate-to-track data association has been considered. We use the SMC-PHD filter to handle the MTT aspect and obtain target state estimates. We model the interaction between target tracks as a game by considering them as players and the set of target state estimates as strategies. Utility functions for the players are defined and a regret-based learning algorithm with a forgetting factor is used to find the equilibrium of the game. Simulation results are presented to demonstrate the performance of the proposed technique.