A Modified Deep Learning Approach for Reconstruction of MODIS LST Product

A. Sekertekin, Serkal Kartan, Qi Liu, S. Bonafoni
{"title":"A Modified Deep Learning Approach for Reconstruction of MODIS LST Product","authors":"A. Sekertekin, Serkal Kartan, Qi Liu, S. Bonafoni","doi":"10.31490/9788024846026-6","DOIUrl":null,"url":null,"abstract":"This study aims to apply a modified deep learning model to reconstruct cloudy MODIS LST (Land surface Temperature) images. The proposed system was initially designed to colorize a grayscale image with a Convolutional Neural Network (CNN). We modified this approach by training our model using cloudless (clear-sky) MODIS LST data. In the application, 208 cloudless daily MODIS LST images were used. 90% of these images were utilized in the training step, the remaining 10% were used in the testing step. The average RMSE values of each image ranged from 1.76 o C to 4.41 o C. Results proved the significance of the proposed method in the reconstruction of cloudy MODIS LST pixels even with a small dataset.","PeriodicalId":419801,"journal":{"name":"GIS Ostrava 2022 Earth Observation for Smart City and Smart Region","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIS Ostrava 2022 Earth Observation for Smart City and Smart Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31490/9788024846026-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study aims to apply a modified deep learning model to reconstruct cloudy MODIS LST (Land surface Temperature) images. The proposed system was initially designed to colorize a grayscale image with a Convolutional Neural Network (CNN). We modified this approach by training our model using cloudless (clear-sky) MODIS LST data. In the application, 208 cloudless daily MODIS LST images were used. 90% of these images were utilized in the training step, the remaining 10% were used in the testing step. The average RMSE values of each image ranged from 1.76 o C to 4.41 o C. Results proved the significance of the proposed method in the reconstruction of cloudy MODIS LST pixels even with a small dataset.
一种改进的深度学习方法用于MODIS LST产品的重建
本研究旨在应用改进的深度学习模型重建多云MODIS地表温度(Land surface Temperature, LST)图像。该系统最初设计用于使用卷积神经网络(CNN)对灰度图像进行着色。我们修改了这种方法,使用无云(晴空)MODIS LST数据训练我们的模型。应用中使用了208张无云MODIS LST日图像。其中90%的图像用于训练步骤,剩下的10%用于测试步骤。每张图像的平均RMSE值在1.76 ~ 4.41 oc之间,结果证明了该方法在小数据集下重建多云MODIS LST像元的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信