Deep Paraphrase Detection in Indian Languages

Rupal Bhargava, Gargi Sharma, Yashvardhan Sharma
{"title":"Deep Paraphrase Detection in Indian Languages","authors":"Rupal Bhargava, Gargi Sharma, Yashvardhan Sharma","doi":"10.1145/3110025.3122119","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to the problem of paraphrase identification in English and Indian languages using Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). Traditional machine learning approaches used features that involved using resources such as POS taggers, dependency parsers, etc. for English. The lack of similar resources for Indian languages has been a deterrent to the advancement of paraphrase detection task in Indian languages. Deep learning helps in overcoming the shortcomings of traditional machine Learning techniques. In this paper, three approaches have been proposed, a simple CNN that uses word embeddings as input, a CNN that uses WordNet scores as input and RNN based approach with both LSTM and bi-directional LSTM.","PeriodicalId":399660,"journal":{"name":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3110025.3122119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents an approach to the problem of paraphrase identification in English and Indian languages using Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). Traditional machine learning approaches used features that involved using resources such as POS taggers, dependency parsers, etc. for English. The lack of similar resources for Indian languages has been a deterrent to the advancement of paraphrase detection task in Indian languages. Deep learning helps in overcoming the shortcomings of traditional machine Learning techniques. In this paper, three approaches have been proposed, a simple CNN that uses word embeddings as input, a CNN that uses WordNet scores as input and RNN based approach with both LSTM and bi-directional LSTM.
印度语言的深层释义检测
本文提出了一种基于卷积神经网络(CNN)和递归神经网络(RNN)的英语和印度语释义识别方法。传统的机器学习方法使用的功能涉及使用英语的POS标记器、依赖解析器等资源。由于缺乏类似的印度语言资源,印度语言释义检测工作的进展受到了阻碍。深度学习有助于克服传统机器学习技术的缺点。本文提出了三种方法,一种是使用词嵌入作为输入的简单CNN,一种是使用WordNet分数作为输入的CNN,另一种是使用LSTM和双向LSTM的基于RNN的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信