Scale and Configuration Effects of an Airchamber on PTO of Oscillating Water Column Type Wave Energy Converters

T. Ikoma, Shota Hirai, Y. Aida, K. Masuda
{"title":"Scale and Configuration Effects of an Airchamber on PTO of Oscillating Water Column Type Wave Energy Converters","authors":"T. Ikoma, Shota Hirai, Y. Aida, K. Masuda","doi":"10.1115/omae2021-62173","DOIUrl":null,"url":null,"abstract":"\n Wave energy converters (WECs) have been extensively researched. The behaviour of the oscillating water column (OWC) in OWC WECs is extremely complex due to the interaction of waves, air, and turbines. Several problems must be overcome before such WECs can be put to practical use. One problem is that the effect of the difference in scale between a small-scale experimental model and a full-scale model is unclear. In this study, several OWC models with different scales and geometries were used in forced oscillation tests. The wave tank was 7.0 m wide, 24.0 m long, and 1.0 m deep. In the static water experiment, we measured the air pressure and water surface fluctuations in an air chamber. For the experiments, models with a box shape with an open bottom, a manifold shape with an open bottom, and a box shape with a front opening, respectively, were fabricated. Furthermore, 1/1, 1/2, and 1/4 scale models were fabricated for each shape to investigate the effects of scale and shape on the air chamber characteristics. Numerical calculations were carried out by applying linear potential theory and the results were compared with the experimental values. The results confirmed that the air chamber shape and scale affect the air pressure fluctuation and water surface fluctuation inside the OWC system.","PeriodicalId":269406,"journal":{"name":"Volume 5: Ocean Space Utilization","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Ocean Space Utilization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2021-62173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wave energy converters (WECs) have been extensively researched. The behaviour of the oscillating water column (OWC) in OWC WECs is extremely complex due to the interaction of waves, air, and turbines. Several problems must be overcome before such WECs can be put to practical use. One problem is that the effect of the difference in scale between a small-scale experimental model and a full-scale model is unclear. In this study, several OWC models with different scales and geometries were used in forced oscillation tests. The wave tank was 7.0 m wide, 24.0 m long, and 1.0 m deep. In the static water experiment, we measured the air pressure and water surface fluctuations in an air chamber. For the experiments, models with a box shape with an open bottom, a manifold shape with an open bottom, and a box shape with a front opening, respectively, were fabricated. Furthermore, 1/1, 1/2, and 1/4 scale models were fabricated for each shape to investigate the effects of scale and shape on the air chamber characteristics. Numerical calculations were carried out by applying linear potential theory and the results were compared with the experimental values. The results confirmed that the air chamber shape and scale affect the air pressure fluctuation and water surface fluctuation inside the OWC system.
气室尺度与构型对振荡水柱型波浪能转换器PTO的影响
波浪能转换器(WECs)得到了广泛的研究。由于波浪、空气和涡轮机的相互作用,振荡水柱(OWC)的行为非常复杂。在这种WECs投入实际使用之前,必须克服几个问题。一个问题是,小规模实验模型和全尺寸模型之间的比例差异的影响尚不清楚。在本研究中,几种不同尺度和几何形状的OWC模型被用于强迫振荡试验。波浪池宽7.0米,长24.0米,深1.0米。在静水实验中,我们测量了空气室中的气压和水面波动。在实验中,分别制作了底部开槽的箱形、底部开槽的流形和前面开槽的箱形模型。此外,还分别制作了1/1、1/2和1/4比例模型,研究了比例和形状对气室特性的影响。应用线性势理论进行了数值计算,并与实验值进行了比较。结果表明,气室的形状和规模影响着OWC系统内的气压波动和水面波动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信