Vision-based malaria parasite image analysis: a systematic review

P. Pattanaik, T. Swarnkar
{"title":"Vision-based malaria parasite image analysis: a systematic review","authors":"P. Pattanaik, T. Swarnkar","doi":"10.1504/IJBRA.2019.097987","DOIUrl":null,"url":null,"abstract":"Background: Malaria is one of the classic neglected serious diseases in many developing countries. The early stage of disease detection, accurate parasite count, detection of the aggressiveness of the disease, technical limitations, lack of expertise in malaria diagnosis and smart tools, lack of good quality healthcare services, funds so on are the challenges found during malaria diagnosis that requires a deeper analysis. Objectives: This paper aims to give a review of the automated diagnosis or visual inspection of malaria parasites using histology images of thin or thick blood film smears. Methods and Results: Various computer -aided diagnosis techniques are in use to solve tasks meticulously in a stratified description paradigm using non-linear transformation architectures. Conclusion: This work elaborates a comprehensive study of various computer vision diagnostic approaches already proposed in this field with a future direction for better quicker malaria identification.","PeriodicalId":434900,"journal":{"name":"Int. J. Bioinform. Res. Appl.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bioinform. Res. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2019.097987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Background: Malaria is one of the classic neglected serious diseases in many developing countries. The early stage of disease detection, accurate parasite count, detection of the aggressiveness of the disease, technical limitations, lack of expertise in malaria diagnosis and smart tools, lack of good quality healthcare services, funds so on are the challenges found during malaria diagnosis that requires a deeper analysis. Objectives: This paper aims to give a review of the automated diagnosis or visual inspection of malaria parasites using histology images of thin or thick blood film smears. Methods and Results: Various computer -aided diagnosis techniques are in use to solve tasks meticulously in a stratified description paradigm using non-linear transformation architectures. Conclusion: This work elaborates a comprehensive study of various computer vision diagnostic approaches already proposed in this field with a future direction for better quicker malaria identification.
基于视觉的疟疾寄生虫图像分析:系统综述
背景:疟疾是许多发展中国家典型的被忽视的严重疾病之一。疾病早期检测、准确的寄生虫计数、疾病侵袭性检测、技术限制、缺乏疟疾诊断专业知识和智能工具、缺乏优质医疗服务、资金等都是疟疾诊断过程中发现的挑战,需要进行更深入的分析。目的:综述利用薄或厚血膜涂片的组织学图像对疟原虫进行自动诊断或目视检查的研究进展。方法和结果:使用各种计算机辅助诊断技术,在使用非线性转换架构的分层描述范式中细致地解决任务。结论:本研究对该领域已经提出的各种计算机视觉诊断方法进行了综合研究,为更快更好地识别疟疾提供了未来的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信