Robot localization with Monte Carlo method

Muhammed Bilgin, T. Ensari
{"title":"Robot localization with Monte Carlo method","authors":"Muhammed Bilgin, T. Ensari","doi":"10.1109/EBBT.2017.7956755","DOIUrl":null,"url":null,"abstract":"This report describes the Monte Carlo approach to the localization of a robot or autonomous system. Localization in robot or autonomous systems is the problem of position determination using sensor data. The Monte Carlo method is estimated by making statistical inferences. However, The noisy data from the sensors can change the instantaneous state of the robot or an autonomous system. To overcome this problem, the Monte Carlo algorithm family uses the state tree of the Particle Filter. Monte Carlo algorithm predicts the posterior proximity of a robot using a set of weighted sampling methods. Experimental results show the effectiveness of the proposed algorithm.","PeriodicalId":293165,"journal":{"name":"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)","volume":"3 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EBBT.2017.7956755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This report describes the Monte Carlo approach to the localization of a robot or autonomous system. Localization in robot or autonomous systems is the problem of position determination using sensor data. The Monte Carlo method is estimated by making statistical inferences. However, The noisy data from the sensors can change the instantaneous state of the robot or an autonomous system. To overcome this problem, the Monte Carlo algorithm family uses the state tree of the Particle Filter. Monte Carlo algorithm predicts the posterior proximity of a robot using a set of weighted sampling methods. Experimental results show the effectiveness of the proposed algorithm.
基于蒙特卡罗方法的机器人定位
本报告描述了机器人或自主系统定位的蒙特卡罗方法。机器人或自主系统中的定位是利用传感器数据确定位置的问题。蒙特卡罗方法是通过统计推断来估计的。然而,来自传感器的噪声数据可能会改变机器人或自主系统的瞬时状态。为了克服这个问题,蒙特卡罗算法族使用粒子滤波的状态树。蒙特卡罗算法使用一组加权抽样方法来预测机器人的后验接近度。实验结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信