A novel parallel adaptation of an implicit path delay grading method

Joseph Lenox, S. Tragoudas
{"title":"A novel parallel adaptation of an implicit path delay grading method","authors":"Joseph Lenox, S. Tragoudas","doi":"10.1145/2591513.2591539","DOIUrl":null,"url":null,"abstract":"For large modern circuits, it is desirable to trade hardware cost for time when making path delay fault coverage estimates, especially as a subroutine for ATPG and timing analysis solutions. A parallel adaptation of an established framework for implicit path delay fault grading on with a GPGPU implementation is presented. Experimental evaluation on a NVIDIA Tesla C2075 GPU shows on average 50x speedup against the basic version for the framework on an Intel Xeon E5504 host system. Over a 1200x speedup is observed against a single-threaded, more complex version in the framework which grades more faults.","PeriodicalId":272619,"journal":{"name":"ACM Great Lakes Symposium on VLSI","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591513.2591539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For large modern circuits, it is desirable to trade hardware cost for time when making path delay fault coverage estimates, especially as a subroutine for ATPG and timing analysis solutions. A parallel adaptation of an established framework for implicit path delay fault grading on with a GPGPU implementation is presented. Experimental evaluation on a NVIDIA Tesla C2075 GPU shows on average 50x speedup against the basic version for the framework on an Intel Xeon E5504 host system. Over a 1200x speedup is observed against a single-threaded, more complex version in the framework which grades more faults.
一种新的并行自适应隐式路径延迟分级方法
对于大型现代电路,在进行路径延迟故障覆盖估计时,特别是作为ATPG和时序分析解决方案的子程序,需要用硬件成本换取时间。提出了一种基于GPGPU实现的隐式路径延迟故障分级框架的并行适应方法。在NVIDIA Tesla C2075 GPU上的实验评估显示,与英特尔至强E5504主机系统上的框架基本版本相比,该框架的平均加速速度提高了50倍。对于单线程、更复杂的框架版本,可以观察到超过1200倍的加速,该版本可以对更多的错误进行分级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信