Design and Implementation of Electric Charge Arrears Prediction System

Wenzhong Guo, Wei-Yong Hong, Wanhua Li, Kun Guo
{"title":"Design and Implementation of Electric Charge Arrears Prediction System","authors":"Wenzhong Guo, Wei-Yong Hong, Wanhua Li, Kun Guo","doi":"10.1109/WISA.2015.59","DOIUrl":null,"url":null,"abstract":"Electric charge is the primary income for the power company. However, collecting electric charge is much difficult due to the existence of the risky consumer which makes the huge impact on the normal operation and development of the company. So the arrear problem of the risky customers has become one of the focus problems. Based on the gettable electric data from some areas, this paper proposed an integral system which can predict risky customers according to the various scenarios. In the system, the Random Forest (RF) model and Extreme Learning Machine (ELM) model are integrated that can effectively analyze the obvious features of the risky customers and predict the potential risky customers. In the experiment part, it has shown that our system applied to arrear risky customers' prediction has higher performance.","PeriodicalId":198938,"journal":{"name":"2015 12th Web Information System and Application Conference (WISA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 12th Web Information System and Application Conference (WISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2015.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Electric charge is the primary income for the power company. However, collecting electric charge is much difficult due to the existence of the risky consumer which makes the huge impact on the normal operation and development of the company. So the arrear problem of the risky customers has become one of the focus problems. Based on the gettable electric data from some areas, this paper proposed an integral system which can predict risky customers according to the various scenarios. In the system, the Random Forest (RF) model and Extreme Learning Machine (ELM) model are integrated that can effectively analyze the obvious features of the risky customers and predict the potential risky customers. In the experiment part, it has shown that our system applied to arrear risky customers' prediction has higher performance.
电费拖欠预测系统的设计与实现
电费是电力公司的主要收入来源。然而,由于风险消费者的存在,收取电费难度很大,对公司的正常运营和发展造成了巨大的影响。因此,风险客户的拖欠问题已成为银行关注的焦点问题之一。基于部分地区可获取的电力数据,本文提出了一个可根据不同场景预测风险客户的集成系统。该系统将随机森林(Random Forest, RF)模型与极限学习机(Extreme Learning Machine, ELM)模型相结合,能够有效分析风险客户的明显特征,预测潜在风险客户。在实验部分,我们的系统应用于拖欠风险客户的预测具有较高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信