Spatial-Based Model Predictive Path Following Control for Skid Steering Mobile Robots

Zhan Dorbetkhany, Alimzhan Murbabulatov, M. Rubagotti, A. Shintemirov
{"title":"Spatial-Based Model Predictive Path Following Control for Skid Steering Mobile Robots","authors":"Zhan Dorbetkhany, Alimzhan Murbabulatov, M. Rubagotti, A. Shintemirov","doi":"10.1109/MESA55290.2022.10004456","DOIUrl":null,"url":null,"abstract":"This paper presents a model predictive path following control (MPPFC) framework for driving skid-steered mobile robots (SSMRs) in the presence of obstacles. A spatial kinematic model is used to develop a model along a predefined path while avoiding any incidental stationary obstacles. Extensive computation experiments executed on a physical robot simulator environment demonstrate that the proposed control approach effectively ensures robot convergence to a reference path with minimal deviations. The employed MPPFC parameters are presented for easy repeatability of the presented computation experiments and further utilization of the proposed control framework.","PeriodicalId":410029,"journal":{"name":"2022 18th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MESA55290.2022.10004456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a model predictive path following control (MPPFC) framework for driving skid-steered mobile robots (SSMRs) in the presence of obstacles. A spatial kinematic model is used to develop a model along a predefined path while avoiding any incidental stationary obstacles. Extensive computation experiments executed on a physical robot simulator environment demonstrate that the proposed control approach effectively ensures robot convergence to a reference path with minimal deviations. The employed MPPFC parameters are presented for easy repeatability of the presented computation experiments and further utilization of the proposed control framework.
滑移转向移动机器人的空间模型预测路径跟踪控制
提出了一种基于模型预测路径跟踪控制(MPPFC)的滑动导向移动机器人(SSMRs)控制框架。使用空间运动学模型沿预定路径建立模型,同时避免任何偶然的固定障碍物。在物理机器人仿真环境中进行的大量计算实验表明,所提出的控制方法能有效地保证机器人以最小的偏差收敛到参考路径。为了便于计算实验的重复性和进一步利用所提出的控制框架,给出了所采用的MPPFC参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信