Non-negative sparse coding

P. Hoyer
{"title":"Non-negative sparse coding","authors":"P. Hoyer","doi":"10.1109/NNSP.2002.1030067","DOIUrl":null,"url":null,"abstract":"Non-negative sparse coding is a method for decomposing multivariate data into non-negative sparse components. We briefly describe the motivation behind this type of data representation and its relation to standard sparse coding and non-negative matrix factorization. We then give a simple yet efficient multiplicative algorithm for finding the optimal values of the hidden components. In addition, we show how the basis vectors can be learned from the observed data. Simulations demonstrate the effectiveness of the proposed method.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"883","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 883

Abstract

Non-negative sparse coding is a method for decomposing multivariate data into non-negative sparse components. We briefly describe the motivation behind this type of data representation and its relation to standard sparse coding and non-negative matrix factorization. We then give a simple yet efficient multiplicative algorithm for finding the optimal values of the hidden components. In addition, we show how the basis vectors can be learned from the observed data. Simulations demonstrate the effectiveness of the proposed method.
非负稀疏编码
非负稀疏编码是一种将多变量数据分解成非负稀疏分量的方法。我们简要地描述了这种类型的数据表示背后的动机及其与标准稀疏编码和非负矩阵分解的关系。然后,我们给出了一个简单而有效的乘法算法来寻找隐藏分量的最优值。此外,我们还展示了如何从观测数据中学习基向量。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信