Patrizia Di Campli San Vito, S. Brewster, F. Pollick, Simon Thompson, L. Skrypchuk, A. Mouzakitis
{"title":"Purring Wheel: Thermal and Vibrotactile Notifications on the Steering Wheel","authors":"Patrizia Di Campli San Vito, S. Brewster, F. Pollick, Simon Thompson, L. Skrypchuk, A. Mouzakitis","doi":"10.1145/3382507.3418825","DOIUrl":null,"url":null,"abstract":"Haptic feedback can improve safety and driving behaviour. While vibration has been widely studied, other haptic modalities have been neglected. To address this, we present two studies investigating the use of uni- and bimodal vibrotactile and thermal cues on the steering wheel. First, notifications with three levels of urgency were subjectively rated and then identified during simulated driving. Bimodal feedback showed an increased identification time over unimodal vibrotactile cues. Thermal feedback was consistently rated less urgent, showing its suitability for less time critical notifications, where vibration would be unnecessarily attention-grabbing. The second study investigated more complex thermal and bimodal haptic notifications comprised of two different types of information (Nature and Importance of incoming message). Results showed that both modalities could be identified with high recognition rates of up to 92% for both and up to 99% for a single type, opening up a novel design space for haptic in-car feedback.","PeriodicalId":402394,"journal":{"name":"Proceedings of the 2020 International Conference on Multimodal Interaction","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3382507.3418825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Haptic feedback can improve safety and driving behaviour. While vibration has been widely studied, other haptic modalities have been neglected. To address this, we present two studies investigating the use of uni- and bimodal vibrotactile and thermal cues on the steering wheel. First, notifications with three levels of urgency were subjectively rated and then identified during simulated driving. Bimodal feedback showed an increased identification time over unimodal vibrotactile cues. Thermal feedback was consistently rated less urgent, showing its suitability for less time critical notifications, where vibration would be unnecessarily attention-grabbing. The second study investigated more complex thermal and bimodal haptic notifications comprised of two different types of information (Nature and Importance of incoming message). Results showed that both modalities could be identified with high recognition rates of up to 92% for both and up to 99% for a single type, opening up a novel design space for haptic in-car feedback.