Real-Time Tracking IDs and Joints of Users

Seongmin Baek, Myunggyu Kim
{"title":"Real-Time Tracking IDs and Joints of Users","authors":"Seongmin Baek, Myunggyu Kim","doi":"10.1145/3301326.3301365","DOIUrl":null,"url":null,"abstract":"This paper proposes a method of using multiple depth sensors vulnerable to joint occlusion and rotation to capture the dynamic motions of two users. The proposed method captures a series of multi-user motions by tracking user IDs, sorting out ID specific joints, and incorporating the joint movement data based on weighting. The ellipses accelerate the process of sorting out the depth data per user. Then, the sorted depth data add to the accuracy of joint positions for the adjustment of lower-limb joints. The proposed method enables an accurate restoration of 3D poses even in dynamic motions, and is applicable to experiential and training programs.","PeriodicalId":294040,"journal":{"name":"Proceedings of the 2018 VII International Conference on Network, Communication and Computing","volume":"os-48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 VII International Conference on Network, Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3301326.3301365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a method of using multiple depth sensors vulnerable to joint occlusion and rotation to capture the dynamic motions of two users. The proposed method captures a series of multi-user motions by tracking user IDs, sorting out ID specific joints, and incorporating the joint movement data based on weighting. The ellipses accelerate the process of sorting out the depth data per user. Then, the sorted depth data add to the accuracy of joint positions for the adjustment of lower-limb joints. The proposed method enables an accurate restoration of 3D poses even in dynamic motions, and is applicable to experiential and training programs.
实时跟踪用户id和关节
本文提出了一种利用易受关节遮挡和旋转影响的多个深度传感器来捕捉两个用户的动态运动的方法。该方法通过跟踪用户ID,对ID特定的关节进行分类,并结合基于加权的关节运动数据来捕获一系列的多用户运动。省略号加快了对每个用户深度数据的整理过程。然后,将排序后的深度数据加入到关节位置的精度中,用于下肢关节的调整。所提出的方法即使在动态运动中也能准确地恢复3D姿势,并且适用于体验和培训计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信