{"title":"A Simulator for Distributed Cache Managementin Friend-to-Friend Networks","authors":"Keynan Pratt, C. Williamson","doi":"10.1145/2901378.2901398","DOIUrl":null,"url":null,"abstract":"Multimedia streaming services such as YouTube and Netflix consume a staggering amount of Internet bandwidth [1]. Furthermore, traditional mechanisms such as proxy caches, content distribution networks, and redundant traffic elimination are rendered ineffective by copyright concerns, regulatory issues, and the growing prevalence of end-to-end encryption. One possible solution is a peer-to-peer caching system with social relationships at the core of its topology construction. A social topology carries an implicit level of trust, and induces a relatively high degree of correlation between users that can be exploited by the system as a whole. For example, two users with shared interests are more likely to have relevant videos in cache for each other. This short paper discusses the design of a simulator for such a system to provide insight into the performance of different cache management policies.","PeriodicalId":325258,"journal":{"name":"Proceedings of the 2016 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2901378.2901398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multimedia streaming services such as YouTube and Netflix consume a staggering amount of Internet bandwidth [1]. Furthermore, traditional mechanisms such as proxy caches, content distribution networks, and redundant traffic elimination are rendered ineffective by copyright concerns, regulatory issues, and the growing prevalence of end-to-end encryption. One possible solution is a peer-to-peer caching system with social relationships at the core of its topology construction. A social topology carries an implicit level of trust, and induces a relatively high degree of correlation between users that can be exploited by the system as a whole. For example, two users with shared interests are more likely to have relevant videos in cache for each other. This short paper discusses the design of a simulator for such a system to provide insight into the performance of different cache management policies.