MixDir: Scalable Bayesian Clustering for High-Dimensional Categorical Data

C. Ahlmann-Eltze, C. Yau
{"title":"MixDir: Scalable Bayesian Clustering for High-Dimensional Categorical Data","authors":"C. Ahlmann-Eltze, C. Yau","doi":"10.1109/DSAA.2018.00068","DOIUrl":null,"url":null,"abstract":"Multivariate analysis of high-dimensional datasets with multiple categorical variables (e.g. surveys, questionnaires) is a challenging task but can reveal patterns of responses that are masked from univariate analyses. In this paper we propose a novel variational inference algorithm to cluster high-dimensional categorical observations into latent classes. Variational inference is an approximate Bayesian inference algorithm, which combines fast optimization methods with the ability to propagate the uncertainty to the clustering (soft clustering). The model is robust to misspecification of the number of latent classes and can infer a reasonable number from the data. We assess the performance on synthetic and real world data and show that our algorithm has similar performance to the best other tested method if the correct number of classes is known and outperforms the other methods if it the number of classes needs to be inferred. An R-package implementing our algorithm is available at the Comprehensive R Archive Network","PeriodicalId":208455,"journal":{"name":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2018.00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Multivariate analysis of high-dimensional datasets with multiple categorical variables (e.g. surveys, questionnaires) is a challenging task but can reveal patterns of responses that are masked from univariate analyses. In this paper we propose a novel variational inference algorithm to cluster high-dimensional categorical observations into latent classes. Variational inference is an approximate Bayesian inference algorithm, which combines fast optimization methods with the ability to propagate the uncertainty to the clustering (soft clustering). The model is robust to misspecification of the number of latent classes and can infer a reasonable number from the data. We assess the performance on synthetic and real world data and show that our algorithm has similar performance to the best other tested method if the correct number of classes is known and outperforms the other methods if it the number of classes needs to be inferred. An R-package implementing our algorithm is available at the Comprehensive R Archive Network
MixDir:高维分类数据的可伸缩贝叶斯聚类
对具有多个分类变量的高维数据集(如调查、问卷)进行多变量分析是一项具有挑战性的任务,但可以揭示单变量分析所掩盖的响应模式。本文提出了一种新的变分推理算法,将高维分类观测聚类为潜在类。变分推理是一种近似贝叶斯推理算法,它结合了快速优化方法和将不确定性传播到聚类(软聚类)的能力。该模型对潜在类别数量的错误描述具有鲁棒性,并能从数据中推断出合理的数量。我们在合成和真实世界的数据上评估了性能,并表明如果已知正确的类数量,我们的算法与其他最佳测试方法具有相似的性能,并且如果需要推断类的数量,我们的算法优于其他方法。实现我们算法的R包可以在综合R档案网络上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信