Synthesis of Reversible Circuits with No Ancilla Bits for Large Reversible Functions Specified with Bit Equations

Nouraddin Alhagi, M. Hawash, M. Perkowski
{"title":"Synthesis of Reversible Circuits with No Ancilla Bits for Large Reversible Functions Specified with Bit Equations","authors":"Nouraddin Alhagi, M. Hawash, M. Perkowski","doi":"10.1109/ISMVL.2010.16","DOIUrl":null,"url":null,"abstract":"This paper presents a new algorithm MP(multiple pass) to synthesize large reversible binary circuits without ancilla bits. The MMD algorithm requires to store a truth table (or a Reed-Muller -RM transform) as a 2^n vector for a reversible function of n variables. This representation prohibits synthesis of large functions. However, in MP we do not store such an exponentially growing data structure. The values of minterms are calculated in MP dynamically, one-by-one, from a set of logic equations that specify the reversible circuit to be designed. This allows for synthesis of large scale reversible circuits (30-bits), which is not possible with existing algorithms. In addition, our unique multipass approach where the circuit is synthesized with various, yet specific, minterm orders yields optimal solution. The algorithm returns a description of the optimal circuit with respect to gate count or quantum cost. Although the synthesis process is relatively slower, the solution is found in real-time for smaller circuits of 8 bits or less","PeriodicalId":447743,"journal":{"name":"2010 40th IEEE International Symposium on Multiple-Valued Logic","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 40th IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2010.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

This paper presents a new algorithm MP(multiple pass) to synthesize large reversible binary circuits without ancilla bits. The MMD algorithm requires to store a truth table (or a Reed-Muller -RM transform) as a 2^n vector for a reversible function of n variables. This representation prohibits synthesis of large functions. However, in MP we do not store such an exponentially growing data structure. The values of minterms are calculated in MP dynamically, one-by-one, from a set of logic equations that specify the reversible circuit to be designed. This allows for synthesis of large scale reversible circuits (30-bits), which is not possible with existing algorithms. In addition, our unique multipass approach where the circuit is synthesized with various, yet specific, minterm orders yields optimal solution. The algorithm returns a description of the optimal circuit with respect to gate count or quantum cost. Although the synthesis process is relatively slower, the solution is found in real-time for smaller circuits of 8 bits or less
用位方程表示的大可逆函数无辅助位的可逆电路的合成
本文提出了一种多通合成无辅助位的大型可逆二进制电路的新算法。MMD算法需要将真值表(或Reed-Muller -RM变换)存储为n个变量的可逆函数的2^n向量。这种表示方式禁止对大型函数进行综合。然而,在MP中,我们不存储这种指数增长的数据结构。最小项的值是在MP中从一组指定要设计的可逆电路的逻辑方程中逐个动态计算出来的。这允许大规模可逆电路(30位)的合成,这是不可能与现有的算法。此外,我们独特的多通方法,其中电路合成与各种,但具体的,最短的顺序产生最优解决方案。该算法返回关于门数或量子代价的最优电路的描述。虽然合成过程相对较慢,但解决方案是在8位或更小的电路中实时找到的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信