Towards automatic transcription of expressive oral percussive performances

Amaury Hazan
{"title":"Towards automatic transcription of expressive oral percussive performances","authors":"Amaury Hazan","doi":"10.1145/1040830.1040904","DOIUrl":null,"url":null,"abstract":"We describe a tool for transcribing voice generated percussive rhythms. The system consists of: (a) a segmentation component which separates the monophonic input stream into percussive events (b) a descriptors generation component that computes a set of acoustic features from each of the extracted segments, (c) a machine learning component which assigns to each of the segmented sounds of the input stream a symbolic class. We describe each of these components and compare different machine learning strategies that can be used to obtain a symbolic representation of the oral percussive performance.","PeriodicalId":376409,"journal":{"name":"Proceedings of the 10th international conference on Intelligent user interfaces","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th international conference on Intelligent user interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1040830.1040904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We describe a tool for transcribing voice generated percussive rhythms. The system consists of: (a) a segmentation component which separates the monophonic input stream into percussive events (b) a descriptors generation component that computes a set of acoustic features from each of the extracted segments, (c) a machine learning component which assigns to each of the segmented sounds of the input stream a symbolic class. We describe each of these components and compare different machine learning strategies that can be used to obtain a symbolic representation of the oral percussive performance.
实现自动转录富有表现力的口头打击乐表演
我们介绍了一种用于转录语音生成的打击节奏的工具。该系统包括(a) 分割组件,将单声道输入流分割成打击乐事件;(b) 描述符生成组件,从每个提取的片段中计算出一组声学特征;(c) 机器学习组件,为输入流中每个分割的声音分配一个符号类。我们将逐一介绍这些组件,并比较不同的机器学习策略,以获得口腔打击乐演奏的符号表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信